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1. Introduction.
In [12] we showed how to algorithmically prove all polynomial identities involving a

certain class of elements from second-order linear recurrences with constant coefficients.
In this paper, we attempt to extend these results to third-order linear recurrences.

Let 〈Sn〉 be a sequence defined by the third-order linear recurrence

Sn = pSn−1 + qSn−2 + rSn−3 (1)

where r �= 0. We will consider three special such sequences, 〈Xn〉, 〈Yn〉, and 〈Zn〉 given by
the following initial conditions:

X0 = 0, X1 = 0, X2 = 1;
Y0 = 0, Y1 = 1, Y2 = 0;
Z0 = 1, Z1 = 0, Z2 = 0.

(2)

These initial conditions were chosen so that the three sequences form a basis for the set
of all third-order linear recurrences with constant coefficients, and because they will allow
us (in a future paper) to generalize our results to higher-order recurrences. These three
sequences also have nice Binet forms.

Given any sequence 〈Sn〉 that satisfies recurrence (1), we can write its elements as a
linear combination of Xn, Yn, and Zn, namely

Sn = S2Xn + S1Yn + S0Zn. (3)

Thus, it suffices to show that we can algorithmically prove any identity involving Xn, Yn,
and Zn.

The sequence 〈Sn〉 can be defined for negative values of n by using the recurrence (1)
to extend the sequence backwards, or equivalently, by using the recurrence

S−n = (−qS−n+1 − pS−n+2 + S−n+3)/r. (4)

A short table of values of Xn, Yn, and Zn for small values of n is given below:

n −2 −1 0 1 2 3 4 5
Xn −q/r2 1/r 0 0 1 p p2 + q p3 + 2pq + r
Yn (pq + r)/r2 −p/r 0 1 0 q pq + r p2q + pr + q2

Zn (q2 − pr)/r2 −q/r 1 0 0 r pr r(p2 + q)

The characteristic equation for recurrence (1) is

x3 − px2 − qx − r = 0. (5)
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Let the roots of this equation be r1, r2, and r3, which we shall assume are distinct.
The condition that these roots are distinct is that ∆, the discriminant, is nonzero. That
is,

∆2 = (r1 − r2)2(r2 − r3)2(r3 − r1)2 = p2q2 − 27r2 + 4q3 − 4p3r − 18pqr > 0. (6)

The Binet forms for our sequences are given by:

Xn = A1r
n
1 + B1r

n
2 + C1r

n
3 ,

Yn = A2r
n
1 + B2r

n
2 + C2r

n
3 ,

Zn = A3r
n
1 + B3r

n
2 + C3r

n
3 ,

(7)

where

A1 =
1

(r1 − r2)(r1 − r3)
, B1 =

1
(r2 − r3)(r2 − r1)

, C1 =
1

(r3 − r1)(r3 − r2)
;

A2 =
−(r2 + r3)

(r1 − r2)(r1 − r3)
, B2 =

−(r3 + r1)
(r2 − r3)(r2 − r1)

, C2 =
−(r1 + r2)

(r3 − r1)(r3 − r2)
;

A3 =
r2r3

(r1 − r2)(r1 − r3)
, B3 =

r3r1

(r2 − r3)(r2 − r1)
, C3 =

r1r2

(r3 − r1)(r3 − r2)
.

(8)

Another sequence of interest is

Wn = Xn+2 + Yn+1 + Zn = pXn+1 + 2qXn + 3rXn−1 = (p2 + 2q)Xn + pYn + 3Zn

because Wn has the Binet form

Wn = rn
1 + rn

2 + rn
3 . (9)

We can solve the equations in (7) for the rn
i . We get

rn
1 = r2

1Xn + r1Yn + Zn

rn
2 = r2

2Xn + r2Yn + Zn

rn
3 = r2

3Xn + r3Yn + Zn.

(10)

This idea was suggested by Murray Klamkin. It also follows from Lemma 1 of [11]. These
equations let us convert an expression involving powers of ri, where a variable n occurs in
the exponents, to expressions involving Xn, Yn, and Zn.

From the relationship between the roots and coefficients of a cubic, we have

r1 + r2 + r3 = p

r1r2 + r2r3 + r3r1 = −q

r1r2r3 = r.

(11)
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Thus any symmetric polynomial involving r1, r2, and r3 can be expressed in terms of p, q,
and r. An algorithmic method (Waring’s Algorithm) for performing this transformation
can be found on page 14 in [5].

An explicit formula for Xn in terms of p, q, and r was given in [13], namely

Xn+2 =
∑

a+2b+3c=n

(
a + b + c

a b c

)
paqbrc. (12)

Similar formulas for Yn and Zn can be obtained from the facts that Yn = Xn+1 −pXn and
Zn = rXn−1.

Matrix formulations were given in [17] and [20]:




Sn+2

Sn+1

Sn



 =




p q r
1 0 0
0 1 0




n 


S2

S1

S0



 , (13)




Xn

Yn

Zn



 =




p 1 0
q 0 1
r 0 0




n−2 


1
0
0



 , (14)

and 


Xn+2 Yn+2 Zn+2

Xn+1 Yn+1 Zn+1

Xn Yn Zn



 =




p q r
1 0 0
0 1 0




n

. (15)

2. The Basic Algorithms.

ALGORITHM “TribEvaluate”:
Given an integer constant n, to evaluate Xn, Yn, or Zn numerically, apply the following
algorithm:
STEP 1: [Make subscript positive]. If n < 0, apply algorithm “TribNegate” given below.
STEP 2: [Recurse]. If n > 2, apply the recursion:

Sn = pSn−1 + qSn−2 + rSn−3.

This reduces the subscript by 1, so the recursion must eventually terminate. If n is 0, 1,
or 2, use the values in display (2).
NOTE: While this may not be the fastest way to evaluate Xn, Yn, and Zn, it is nevertheless
an effective algorithm.

The key idea to algorithmically proving identities involving polynomials in Xan+b,
Yan+b, and Zan+b is to first reduce them to polynomials in Xn, Yn, and Zn. To do that,
we need reduction formulas for Xm+n, Ym+n, and Zm+n. Such formulas can be obtained
from equations (7), (8), (10), and (11).

From equation (10), we can compute rn+m
i by multiplying together rn

i and rm
i . Then

equation (7) gives us Xm+n. Thus, Xn+m = A1(r2
1Xn + r1Yn +Zn)(r2

1Xm + r1Ym +Zm)+



4

B1(r2
2Xn + r2Yn +Zn)(r2

2Xm + r2Ym +Zm)+C1(r2
3Xn + r3Yn +Zn)(r2

3Xm + r3Ym +Zm).
Substituting in the values of the A1, B1, and C1 from equation (8) gives us an expression
that is symmetric in r1, r2, and r3. Applying Waring’s Algorithm allows us to express this
in terms of p, q, and r using equation (11). We can do the same for Yn+m and Zn+m. The
results obtained are given by the following algorithm.

ALGORITHM “TribReduce” TO REMOVE SUMS IN SUBSCRIPTS.
Use the identities:

Xm+n = (p2 + q)XmXn + p(XnYm + XmYn) + XnZm + XmZn + YmYn

Ym+n = (pq + r)XmXn + q(XnYm + XmYn) + YnZm + YmZn

Zm+n = prXmXn + r(XnYm + XmYn) + ZmZn.

(16)

These are also known as the addition formulas.
From the table of initial values, we find that the reduction formulas can also be written

in the form

Xm+n = X4XmXn + X3(XnYm + XmYn) + XnZm + XmZn + YmYn

Ym+n = Y4XmXn + Y3(XnYm + XmYn) + YnZm + YmZn

Zm+n = Z4XmXn + Z3(XnYm + XmYn) + ZmZn.

(17)

The matrix formulation is

Xm+n =




Xm

Ym

Zm




T 


X4 X3 X2

X3 X2 X1

X2 X1 X0








Xn

Yn

Zn



 (18)

with similar expressions for Ym+n and Zm+n.
If we allow subscripts on the right other than “n” and “m”, simpler forms of the

reduction formula can be found. For example, [18] gives the following:

Sn+m = XmSn+2 + YmSn+1 + ZmSn. (19)

Similar expressions can be found in [7] and [17]. In matrix form, they can be expressed as



Sn+m

Sn+m−1

Sn+m−2



 =




Xm+1 Ym+1 Zm+1

Xm Ym Zm

Xm−1 Ym−1 Zm−1








Sn+1

Sn

Sn−1



 . (20)

These formulations come from [18] and [20].
Algorithm “TribReduce” allows us to replace any term of the form San+b where a and

b are positive integers by terms of the form Sn. To allow a and b to be negative integers
as well, we can also use equation (16), however, then we will obtain expressions of the
form S−n. Since we would like to express these in the form Sn, we must find formulas for
S−n. The same procedure we used before works again. For example, from equation (10),
we can compute r−n

i as 1/rn
i . Equation (7) then gives X−n = A1/(r2

1Xn + r1Yn + Zn) +
B1/(r2

2Xn + r2Yn + Zn) + C1/(r2
3Xn + r3Yn + Zn). Again we apply Waring’s Algorithm

and we get the following result.
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ALGORITHM “TribNegate” TO REMOVE NEGATIVE SUBSCRIPTS.
Use the identities:

X−n =
pXnYn − qX2

n + Y 2
n − XnZn

rn

Y−n =
(pq + r)X2

n − p2XnYn − pY 2
n − YnZn

rn

Z−n =
(q2 − pr)X2

n − (pq + r)XnYn − qY 2
n + (p2 + 2q)XnZn + pYnZn + Z2

n

rn
.

(21)

If we allow subscripts on the right other than “n”, simpler forms can be found. For
example,

X−n = (Xn+1Yn − XnYn+1)/rn

Y−n = (XnYn+2 − Xn+2Yn)/rn

Z−n = (Xn+2Yn+1 − Xn+1Yn+2)/rn.

(22)

3. The Fundamental Identity Connecting X, Y, and Z.
The Fibonacci and Lucas numbers are connected by the fundamental identity

L2
n = 5F 2

n + 4(−1)n. (23)

Furthermore, it can be shown that if f(Fn, Ln) is any non-constant polynomial (with
coefficients that are constants or of the form (−1)n) that is 0 for all integral values of n,
then this polynomial must be divisible by L2

n − 5F 2
n − 4(−1)n. That is, equation (23) is

the unique identity connecting Fn and Ln.
A similar result holds for arbitrary second-order linear recurrences. For third-order

linear recurrences, we believe there is also exactly one fundamental identity connecting
Xn, Yn, and Zn. In this section, we will find such an identity, but we do not prove that
this identity is unique.

To obtain an identity connecting Xn, Yn, and Zn, we can multiply together the equa-
tions in display (10). The result is a symmetric polynomial in r1, r2, and r3 and can thus
be expressed in terms of p, q, and r. The result is the following.

THE FUNDAMENTAL IDENTITY:

rn = r2X3
n + rY 3

n + Z3
n + (q2 − 2pr)X2

nZn − qrX2
nYn + prXnY 2

n

+ (p2 + 2q)XnZ2
n − qY 2

n Zn + pYnZ2
n − (pq + 3r)XnYnZn.

(24)

If we allow subscripts on the right other than “n”, simpler forms of the fundamental
identity can be found. For example, [15] gives the following equivalent formulation:

∣∣∣∣∣∣

Xn+2 Xn+1 Xn

Yn+2 Yn+1 Yn

Zn+2 Zn+1 Zn

∣∣∣∣∣∣
= rn. (25)
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4. The Simplification Algorithm.
Let us be given a polynomial function of elements of the form Xw, Yw, and Zw, where

the subscripts of X, Y , and Z are of the form a1n1 + a2n2 + · · · + aknk + b where b and
the ai are integer constants and the ni are variables. To put this expression in “canonical
form”, we apply the following algorithm:
ALGORITHM “TribSimplify” TO TRANSFORM AN EXPRESSION TO CANON-
ICAL FORM.
STEP 1: [Remove sums in subscripts]. Apply Algorithm “TribReduce” to remove any
sums (or differences) in subscripts.
STEP 2: [Make multipliers positive]. All subscripts are now of the form cn where c is an
integer. For any term in which the multiplier c is negative, apply Algorithm “TribNegate”.
STEP 3: [Remove multipliers]. All subscripts are now of the form cn where c is a positive
integer. For any term in which the multiplier c is not 1, apply Algorithm “TribReduce”
successively until all subscripts are variables.
STEP 4: [Remove powers of Z]. If any term involves an expression of the form Zk

n where
k > 2 reduce the exponent by 1 by replacing Z3

n by its equivalent value as given by the
fundamental identity (24), namely

Z3
n = rn − r2X3

n − rY 3
n − (q2 − 2pr)X2

nZn + qrX2
nYn − prXnY 2

n

− (p2 + 2q)XnZ2
n + qY 2

n Zn − pYnZ2
n + (pq + 3r)XnYnZn.

(26)

Continue doing this until no Zn term has an exponent larger than 2.
PROVING IDENTITIES.

To prove that an expression is identically 0, it suffices to apply algorithm “TribSim-
plify”. If the resulting canonical form is 0, then the expression is identically 0. We believe
that the converse is true as well; that is, an expression is identically 0 if and only if al-
gorithm “TribSimplify” transforms it to 0. A formal proof can probably be given along
the lines of [18], however, we do not do so. Suffice it to say that algorithm “TribSimplify”
was checked on about 100 identities culled from the literature and it worked every time.
A selection of these identities is given in the appendix. See also [6] for a related algorithm
for trigonometric polynomials.
5. Other Algorithms.

These algorithms can be verified by applying algorithm “TribSimplify”.
ALGORITHM “ConvertToX” TO CHANGE Y’s AND Z’s to X’s
Use the identities:

Yn = −pXn + Xn+1

Zn = rXn−1.
(27)

ALGORITHM “ConvertToY” TO CHANGE Z’s AND X’s to Y’s
Use the identities:

Zn = (rYn+1 − qrYn−1)/(pq + r)
Xn = (pYn+1 + rYn−1)/(pq + r).

(28)
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ALGORITHM “ConvertToZ” TO CHANGE X’s AND Y’s to Z’s

Use the identities:
Xn = Zn+1/r

Yn = Zn−1 + qZn/r.
(29)

ALGORITHM “Removepqr” TO REMOVE p’s, q’s, AND r’s

Use the identities:
p = (Xn+1 − Yn)/Xn

q = (Yn+1 − Zn)/Xn

r = Zn+1/Xn.

(30)

ALGORITHM “TribShiftDown1” TO DECREASE A SUBSCRIPT BY 1

Use the identities:
Xn+1 = pXn + Yn

Yn+1 = qXn + Zn

Zn+1 = rXn.

(31)

These can be found in [10].

ALGORITHM “TribShiftUp1” TO INCREASE A SUBSCRIPT BY 1

Use the identities:
Xn−1 = Zn/r

Yn−1 = Xn − pZn/r

Zn−1 = Yn − qZn/r.

(32)

SUBTRACTION FORMULAS

Use the identities:

Xm−n = (rXn(XnYm − XmYn) − (qXn + Zn)(XnZm − XmZn)
+ (pXn + Yn)(YnZm − YmZn))/rn

Ym−n = (r(pXn + Yn)(XmYn − XnYm) + (pq + r)Xn(XnZm − XmZn)
− (p(p + 1)Xn − Zn)(YnZm − YmZn))/rn

Zm−n = (r2XmX2
n − qrX2

nYm + prXnYmYn + rYmY 2
n + q2X2

nZm − prX2
nZm

− pqXnYnZm − rXnYnZm − qY 2
n Zm − prXmXnZn − rXnYmZn

− rXmYnZn + p2XnZmZn + 2qXnZmZn + pYnZmZn + ZmZ2
n)/rn.

(33)

If we allow subscripts on the right other than simple variables, simpler subtraction
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formulas can be found. For example, [2] gives the following equivalent formulation:

Xm−n =

∣∣∣∣∣∣

Zm Ym Xm

Zn Yn Xn

Zn+1 Yn+1 Xn+1

∣∣∣∣∣∣
/rn

Ym−n =

∣∣∣∣∣∣

Zm Ym Xm

Zn Yn Xn

Zn+2 Yn+2 Xn+2

∣∣∣∣∣∣
/rn

Zm−n =

∣∣∣∣∣∣

Zm Ym Xm

Zn+1 Yn+1 Xn+1

Zn+2 Yn+2 Xn+2

∣∣∣∣∣∣
/rn.

(34)

DOUBLE ARGUMENT FORMULAS
Letting m = n in equation (16) gives us the following.

X2n = (p2 + q)X2
n + 2pXnYn + Y 2

n + 2XnZn

Y2n = (pq + r)X2
n + 2qXnYn + 2YnZn

Z2n = prX2
n + 2rXnYn + Z2

n.

(35)

TO REMOVE SCALAR MULTIPLES OF ARGUMENTS IN SUBSCRIPTS
An expression of the form Skn where k is a positive integer can be thought of as being of
the form Sn+n+···+n where there are k terms in the subscript. This can be expanded out
in terms of Sn by k − 1 repeated applications of the reduction formula (16). For example,
for k = 3 we get the following identities.

X3n = (p4 + 3p2q + q2 + 2pr)X3
n + 3(p3 + 2pq + r)X2

nYn + 3(p2 + q)XnY 2
n

+ pY 3
n + 3(p2 + q)X2

nZn + 6pXnYnZn + 3Y 2
n Zn + 3XnZ2

n

Y3n = (p3q + 2pq2 + p2r + 2qr)X3
n + 3(p2q + q2 + pr)X2

nYn + 3(pq + r)XnY 2
n

+ qY 3
n + 3(pq + r)X2

nZn + 6qXnYnZn + 3YnZ2
n

Z3n = (p3r + 2pqr + r2)X3
n + 3r(p2 + q)X2

nYn + 3prXnY 2
n + rY 3

n + 3prX2
nZn

+ 6rXnYnZn + Z3
n.

In general, we have

Skn =
∑

a+b+c=k

(
k

a b c

)
S2a+bX

a
nY b

nZc
n (36)

where
(

k
a b c

)
denotes the trinomial coefficient k!

a!b!c! . Formula (36) can be proven by induc-
tion on k.
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CHANGE OF BASIS (Shift Formulas)

ALGORITHM “TribShift” TO TRANSFORM AN EXPRESSION INVOLV-
ING Xn, Yn, Zn INTO ONE INVOLVING Xn+a, Yn+b, Zn+c

Use identities such as:

Xn =
1
D

(∣∣∣∣
qXb + Zb Yb

rXc Zc

∣∣∣∣ Xn+a −
∣∣∣∣
pXa + Ya Xa

rXc Zc

∣∣∣∣ Yn+b +
∣∣∣∣
pXa + Ya Xa

qXb + Zb Yb

∣∣∣∣ Zn+c

)

where

D =

∣∣∣∣∣∣

(p2 + q)Xa + pYa + Za pXa + Ya Xa

(pq + r)Xb + qYb qXb + Zb Yb

prXc + rYc rXc Zc

∣∣∣∣∣∣
(37)

which can be obtained by solving the linear equations

Xn+a = (p2 + q)XaXn + p(XnYa + XaYn) + XnZa + XaZn + YaYn

Yn+b = (pq + r)XbXn + q(XnYb + XbYn) + YnZb + YbZn

Zn+c = prXcXn + r(XnYc + XcYn) + ZcZn

for Xn, Yn, and Zn.
One can change from the basis (Xn, Yn, Zn) to the basis (Xn+a, Xn+b, Xn+c) in a

similar manner. Other combinations can be found in the same way. To change from an
arbitrary basis to another, apply algorithm “TribReduce” to transform the given expression
to the basis (Xn, Yn, Zn). Then use one of the above formulas.
6. Turning Squares into Sums.

For Lucas Numbers, there is the well-known formula

L2
n = L2n − 2(−1)n (38)

which allows us to replace the square of a term with a sum of terms. To find an analog for
third-order recurrences, we can proceed as follows.

Combining equations (21) and (35) gives us 6 equations in the 6 variables XnYn,
YnZn, XnZn, X2

n, Y 2
n , and Z2

n. We can then solve these equations for X2
n, Y 2

n , and Z2
n in

terms of X2n, Y2n, Z2n, X−n, Y−n, and Z−n. We get the following (computer-generated)
result.
ALGORITHM “TribExpandSquares” TO TURN SQUARES INTO SUMS:

dX2
n = rn[2(p4 + 5p2q + 4q2 + 6pr)X−n + 2(p3 + 4pq + 9r)Y−n + 2(p2 + 3q)Z−n]

+ 2(3pr − q2)X2n + (pq + 9r)Y2n − 2(p2 + 3q)Z2n (39)
dY 2

n = rn[2(p6 + 6p4q + 8p2q2 + 8p3r + 16pqr + 9r2)X−n

+ 2(p5 + 5p3q + 4pq2 + 7p2r + 3qr)Y−n + 2(p4 + 4p2q + q2 + 6pr)Z−n]
+ (9r2 − p2q2 − 2q3 + 2p3r + 4pqr)X2n + (p3q + 3pq2 + p2r + 3qr)Y2n (40)
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− 2(p4 + 4p2q + q2 + 6pr)Z2n

dZ2
n = rn[2r(p5 + 6p3q + 8pq2 + 7p2r + 12qr)X−n

+ 2r(p4 + 5p2q + 4q2 + 6pr)Y−n + 2r(p3 + 4pq + 9r)Z−n]
− 2r2(p2 + 3q)X2n + r(p2q + 4q2 − 3pr)Y2n (41)
+ (9r2 − p2q2 − 4q3 + 2p3r + 10pqr)Z2n

where d = 27r2 − p2q2 − 4q3 + 4p3r + 18pqr.
These formulas are a bit outrageous. Are there any simpler formulas? Can these be

put in simpler form? To be more specific, we ask the following.
Query. Is there a simpler formula than formula (41) that allows us to express Z2

n as a
linear combination of terms, each of the form Xan+b, Yan+b, or Zan+b? The coefficients
may include the constants p, q, and r as well as the non-linear expression rn.
7. Turning Products into Simpler Products.

For Lucas Numbers, there is the well-known formula

LmLn = Lm+n + (−1)nLm−n (42)

which allows you to turn products into sums. For third-order recurrences, there probably
is no corresponding formula. However, there is a formula that allows us to turn products
of three or more terms into sums of products consisting of just two terms.

To find a formula for XmXnXs, we can proceed as follows. From equation (7), we
have

XmXnXs = (A1r
m
1 + A2r

m
2 + A3r

m
3 )(A1r

n
1 + A2r

n
2 + A3r

n
3 )(A1r

s
1 + A2r

s
2 + A3r

s
3).

After expanding this out, replace any term of the form ra
1rb

2r
c
3 (with a, b, c > 0) by

rsra−s
1 rb−s

2 rc−s
3 , which is equivalent because r1r2r3 = r. Since one of a, b, c is equal

to s, this substitution turns this term into one involving the product of only two powers of
the ri. Use equation (10) to convert powers of r1, r2, and r3 back to expressions involving
X, Y , and Z. Then use Waring’s algorithm and equations (8) and (11) to replace A1, A2,
A3, r1, r2, and r3, by p, q, and r. We get the following (computer generated) result.

XmXnXs =
[
−c8Xm+nXs − c8XnXm+s − c8XmXn+s + c6Xm+n+s − c7Xn+sYm

− c7Xm+sYn − c3XsYm+n − c7Xm+nYs − c6Ym+nYs − c3XnYm+s

− c6YnYm+s − c3XmYn+s − c6YmYn+s − c5Ym+n+s − c6Xn+sZm

+ c5Yn+sZm − c6Xm+sZn + c5Ym+sZn − c2XsZm+n + c5YsZm+n

− c6Xm+nZs + c5Ym+nZs + 3c1Zm+nZs − c2XnZm+s + c5YnZm+s

+ 3c1ZnZm+s − c2XmZn+s + c5YmZn+s + 3c1ZmZn+s

− 3c1Zm+n+s − rs(−2c8Xm−sXn−s + c9Xn−sYm−s

+ c9Xm−sYn−s − 2c6Ym−sYn−s + 2c4Xn−sZm−s + 2c5Yn−sZm−s

+ 2c4Xm−sZn−s + 2c5Ym−sZn−s + 6c1Zm−sZn−s)
]
/d2
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where

c1 = p2q2 + 4q3 − 4p3r − 18pqr − 27r2

c2 = −2p4q2 − 13p2q3 − 20q4 + 8p5r + 56p3qr + 90pq2r + 54p2r2 + 135qr2

c3 = p3q3 + 4pq4 − 4p4qr − 12p2q2r + 24q3r − 24p3r2 − 135pqr2 − 162r3

c4 = p4q2 + 6p2q3 + 8q4 − 4p5r − 27p3qr − 36pq2r − 27p2r2 − 54qr2

c5 = pc1

c6 = qc1

c7 = −3c1r

c8 = −p2q4 − 4q5 + 6p3q2r + 26pq3r − 8p4r2 − 36p2qr2 + 27q2r2 − 54pr3

c9 = −p3q3 − 4pq4 + 4p4qr + 15p2q2r − 12q3r + 12p3r2 + 81pqr2 + 81r3

and
d = 27r2 − p2q2 − 4q3 + 4p3r + 18pqr.

These formulas can be simplified. Using the first formula in display (16), we can
remove any terms of the form YmYn. Using the second formula in display (16), we can
remove any terms of the form YnZm + YmZn. Using the third formula in display (16), we
can remove any terms of the form ZmZn. Upon doing this, we get the following.

dXmXnXs = 2(q2 − 3pr)[XsXm+n + XnXs+m + XmXn+s − 2rsXm−sXn−s]
− 2q[Xm+n+s − rsXm+n−2s] + 2p[Ym+n+s − rsYm+n−2s]
+ 6[Zm+n+s − rsZm+n−2s]
− (pq + 9r)[XsYm+n + XnYs+m + XmYn+s

− rs(Xm−sYn−s + Xn−sYm−s)]

+ 2(p2 + 3q)[XsZm+n + XnZs+m + XmZn+s

− rs(Xm−sZn−s + Xn−sZm−s)].

(43)

This can also be expressed in the following form:
ALGORITHM “TribShortenProducts” TO TURN PRODUCTS OF MANY
TERMS INTO PRODUCTS OF TWO TERMS:

XmXnXs =
[
XsCm+n + XnCs+m + XmCn+s

− rs(Xm−sCn−s + Xn−sCm−s)
− 2qXm+n+s + 2pYm+n+s + 6Zm+n+s

− rs(−2qXm+n−2s + 2pYm+n−2s + 6Zm+n−2s)
]
/d

(44)

where d = 27r2 − p2q2 − 4q3 + 4p3r + 18pqr and

Cn = 2(q2 − 3pr)Xn − (pq + 9r)Yn + 2(p2 + 3q)Zn.
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For products of three terms not all involving X’s, first apply algorithm “ConvertToX”,
formula (27), to change any Y or Z terms to X terms. For products of more than three
terms, this procedure can be repeated, three terms at a time, until only products of two
terms remain.

Formula (44) is still pretty messy. Can it be simplified? Can it be made to look
symmetric under permutations of (m, n, s)?
8. Simson’s Formula.

For Fibonacci numbers, there is the well-known Simson Formula, Fn+1Fn−1 − F 2
n =

(−1)n. This can be written in the form
∣∣∣∣
Fn+1 Fn

Fn Fn−1

∣∣∣∣ = −(−1)n−1. (45)

The generalization of this to third-order recurrences is
∣∣∣∣∣∣

Xn+2 Xn+1 Xn

Xn+1 Xn Xn−1

Xn Xn−1 Xn−2

∣∣∣∣∣∣
= −rn−2 (46)

which can be further generalized to
∣∣∣∣∣∣

Sn+4 Sn+3 Sn+2

Sn+3 Sn+2 Sn+1

Sn+2 Sn+1 Sn

∣∣∣∣∣∣
= rn

∣∣∣∣∣∣

S4 S3 S2

S3 S2 S1

S2 S1 S0

∣∣∣∣∣∣
. (47)

These formulas come from [15].

9. Summations.
We can perform indefinite summations of expressions involving Xn, Yn, and Zn any

time we can perform such summations with an instead, since by (7), these terms are
actually exponentials with bases r1, r2, and r3.

First, the expression is converted to exponential form using equation (7). Then it is
summed. The result is converted back to X’s, Y ’s, and Z’s by using equation (10). Then
r1, r2, and r3 are converted to p, q, and r using equation (11).

The following summations were found using this method.

n∑

k=1

xkXk =
−x2 + xn+1(Xn+1 + xYn+1 + x2Zn+1)

−1 + px + qx2 + rx3
(48)

n∑

k=0

Xak+b = [(Ya+b − Y(n+1)a+b){rX2
a + (pXa + Ya)(Za − 1)}

+ (Xa+b − X(n+1)a+b){(Za − 1)2 − rXaYa + qXa(Za − 1)}
+ (Za+b − Z(n+1)a+b){(pXa + Ya)Ya − qX2

a − Xa(Za − 1)}]
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/[r2X3
a + rY 3

a + (Za − 1)3 − qY 2
a (Za − 1) (49)

+ X2
a((q2 − 2pr)(Za − 1) − qrYa) + pYa(Za − 1)2

+ Xa((p2 + 2q)(Za − 1)2 + prY 2
a − Ya(pq + 3r)(Za − 1))]

n∑

k=1

kXk = [2 − p + r − (n + 1)(2r + q + 1)Xn+1 + n(2r + q + 1)Xn+2

+ (n + 1)(p − r − 2)Yn+1 − n(p − r − 2)Yn+2 (50)
+ (n + 1)(2p + q − 3)Zn+1 − n(2p + q − 3)Zn+2]/(p + q + r − 1)2

n∑

k=1

k2Xk = [(1 + 3q − pq + 7r − 3pr + r2){−(n + 1)2Xn+1

+ (2n2 + 2n − 1)Xn+2 − n2Xn+3}
+ (3 − 3p + p2 + q + 6r − 3pr − qr){−(n + 1)2Yn+1 (51)
+ (2n2 + 2n − 1)Yn+2 − n2Yn+3}
+ (6 − 8p + 3p2 − 3q + 3pq + q2 + 3r − pr){−(n + 1)2Zn+1

+ (2n2 + 2n − 1)Zn+2 − n2Zn+3}]/(p + q + r − 1)3

n∑

k=0

XkXn−k = [−(n + 1)prXn + (9r − npq − 3nr)Xn+1 + q(n − 1)Xn+2 − 3r(n + 1)Yn

+ (np2 − p2 − 3q + nq)Yn+1 − p(n − 1)Yn+2 + (n + 1)(p2 + 4q)Zn (52)
+ 2npZn+1 − 3(n − 1)Zn+2]/(p2q2 + 4q3 − 27r2 − 4p3r − 18pqr).

Most of the above formulas are special cases of formula (5.2) of [22].

10. The Tribonacci Sequence.
The Tribonacci Sequence, 〈Tn〉, may be defined by

Tn = Tn−1 + Tn−2 + Tn−3 (53)

with initial conditions T0 = 0, T1 = 1, and T2 = 1. A basis can be formed from
(Tn, Tn+1, Tn+2).

For this sequence, we have Tn = Xn+1 with p = q = r = 1. To convert X’s, Y ’s, and
Z’s to T ’s, use the identities

Xn = Tn+2 − Tn+1 − Tn

Yn = 2Tn + Tn+1 − Tn+2

Zn = 2Tn+1 − Tn+2.

(54)

The reduction formulas are:

Tn+m = Tn(2Tm+1 − Tm+2) + Tn+1(2Tm + Tm+1 − Tm+2)
− Tn+2(Tm + Tm+1 − Tm+2)

(55)
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and

Tn−m = Tn(T 2
m+1 − TmTm+2) + Tn+1(T 2

m+2 − TmTm+1 − Tm+2Tm − Tm+2Tm+1)

+ Tn+2(T 2
m + TmTm+1 + T 2

m+1 − Tm+1Tm+2).
(56)

A form of the addition formula was first found by Agronomof in 1914 [1].
The double argument formula is

T2n = T 2
n+2 + T 2

n+1 + 4TnTn+1 − 2TnTn+2 − 2Tn+1Tn+2. (57)

A form of this can also be found in [1].
The negation formula is

T−n = T 2
n+2 + T 2

n+1 + T 2
n − Tn+2(2Tn+1 + Tn). (58)

The fundamental identity connecting Tn, Tn+1, and Tn+2 is

T 3
n +2T 3

n+1 +T 3
n+2 +2TnTn+1(Tn +Tn+1)+TnTn+2(Tn −Tn+2 −2Tn+1)−2Tn+1T

2
n+2 = 1.

(59)
The formula to expand squares is

T 2
n = (5T2n+2 − 3T2n+1 − 4T2n + 4T−n + 10T−n−1 − 2T−n−2)/22. (60)

The analog of Simson’s formula is
∣∣∣∣∣∣

Tn+2 Tn+1 Tn

Tn+1 Tn Tn−1

Tn Tn−1 Tn−2

∣∣∣∣∣∣
= −1 (61)

which was found by Miles [9] along with generalizations to higher order recurrences.
Miles [9] also generalized the relationship between Fibonacci numbers and binomial

coefficients from Pascal’s triangle,

Fn+1 =
∑

a+2b=n

(
a + b

a

)
,

to the following formula which relates Tribonacci numbers and trinomial coefficients from
Pascal’s pyramid:

Tn+1 =
∑

a+2b+3c=n

(
a + b + c

a b c

)
. (62)

The following summation was found using the methods of Section 9.
n∑

k=1

T 2
k = [1 + 4TnTn+1 − (Tn+1 − Tn−1)2]/4. (63)
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Appendix 1: Selected Identities.
We present below some selected identities culled from the literature. All these identi-

ties were successfully checked by algorithm “TribSimplify”. Recall that Wn is defined by
equation (9).

The following six identities come from Jarden [7]:

Sn+m = rXmSn−1 + Xm+1(Sn+1 − pSn) + Xm+2Sn

X2n = (2rXn−1 + qXn)Xn + X2
n+1

X2n+1 = rX2
n + (2Xn+2 − pXn+1)Xn+1

X2n = XnWn + rnX−n

W2n = W 2
n − 2rnW−n

X2n+1 = Xn+1Wn + rnX1−n

The following three identities come from Yalavigi [21]:

2W3n = Wn(3W2n − W 2
n) + 6rn

W4n = WnW3n − W2n(W 2
n − W2n)/2 + rnWn

W4n+4m − W4n = Wn+mW3n+3m − WnW3n − W2n+2m(W 2
n+m − 2W2n+2m)/2

+W2n(W 2
n − 2W2n)/2 + rn(Wn+m − Wn)

The following three identities come from Yalavigi [20]:

Sm+n = Xm+2Sn + Ym+2Sn−1 + Zm+2Sn−2

S2n = Xn+2Sn + Yn+2Sn−1 + Zn+2Sn−2

Sm+n = Xm+h+2Sn−h + Ym+h+2Sn−h−1 + Zm+h+2Sn−h−2

The following identity comes from Shannon and Horadam [15]:

Yn = qXn−1 + rXn−2

The following ten identities come from Carlitz [4]: Both ρn and σn satisfy third-
order linear recurrences with r = 1 and the same p and q with initial conditions ρ0 = 1,
ρ1 = ρ2 = 0, σ0 = 3, σ1 = p, σ2 = p2 + 2q. In particular, with r = 1, we have σn = Wn

and ρn = Zn.

2ρmρn−ρm+1ρn−1−ρm−1ρn+1 = σm−3σn−3−σm+n−6−σm−3ρn−3−σn−3ρm−3+2ρm+n−6

σm+3n − σm+2nσn + σm+nσ−n − σm = 0

σ2n = σ2
n − 2σ−n
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σ3n = σ3
n − 3σnσ−n + 3

ρ2
n − ρn+1ρn−1 = ρ3−n

ρ2
n − ρn+1ρn−1 = ρ2n−6 − ρn−3σn−3 + σ3−n

ρmσn = ρm+n + ρm−nσ−n − ρm−2n

σmσn = σm+n + σm−nσ−n − σm−2n

ρ2n = ρnσn − σ−n + ρ−n

ρ3n = ρnσ2
n − σnσ−n + ρ−nσn − ρnσ−n + 1

The following nine identities come from Waddill [17]: In their notation, we have Un =
Xn+1.

Sn+m = Un−kSm+k+1 + Yn−k+1Sm+k + rUn−k−1Sm+k−1

Sn+m = Um−kSn+k+1 + Ym−k+1Sn+k + rUm−k−1Sn+k−1

S2
n + qS2

n−1 + 2rSn−1Sn−2 = S2S2n−2 + (qS1 + rS0)S2n−3 + rS1S2n−4

U2n−1 = U2
n + qU2

n−1 + 2rUn−1Un−2

U2n−1 = Un+1Un−1 + rUn−1Un−2 + U2
n − pUnUn−1

qU2n−1 = U2
n+1 − pUn+1Un + (r − pq)UnUn−1 + qU2

n − pr(UnUn−2 + U2
n−1)

− qrUn−1Un−2 − r2(Un−1Un−3 + U2
n−2)

U3n−1 = Un−1(U2
n+1 + Yn+2Un + rUn−1Un) + Yn(UnUn+1 + Yn+1Un + rU2

n−1)

+ rUn−2(Un−1Un+1 + YnUn + rUn−2Un−1)
∣∣∣∣∣∣

Sn+m+h Sn+j+h Sn+h

Sn+m+k Sn+j+k Sn+k

Sn+m Sn+j Sn

∣∣∣∣∣∣
= rn

∣∣∣∣
Uh−1 Uh

Uk−1 Uk

∣∣∣∣ ·

∣∣∣∣∣∣

Sm+2 Sm+1 Sm

Sj+2 Sj+1 Sj

S2 S1 S0

∣∣∣∣∣∣
∣∣∣∣∣∣

S5n S4n S3n

S4n S3n S2n

S3n S2n Sn

∣∣∣∣∣∣
= rn

∣∣∣∣
U2n−1 U2n

Un−1 Un

∣∣∣∣ ·

∣∣∣∣∣∣

S2n+2 S2n+1 S2n

Sn+2 Sn+1 Sn

S2 S1 S0

∣∣∣∣∣∣

The following five identities were found by Zeitlin [23]:

S2
n+6 = (p2 + q)S2

n+5 + (q2 + qp2 + rp)S2
n+4 + (2r2 + rp3 + 4pqr − q3)S2

n+3

+ (r2p2 − rpq2 − r2q)S2
n+2 + (r2q2 − r3p)S2

n+1 − r4S2
n

S2n+6 − (p2 + 2q)S2n+4 + (q2 − 2rp)S2n+2 − r2S2n = 0

rnS−n = S0(W 2
n − W2n)/2 − WnSn + S2n
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(n − 1)Xn+1 = p
n+2∑

j=0

XjXn+2−j + 2q
n+1∑

j=0

XjXn+1−j + 3r
n∑

j=0

XjXn−j

n∑

k=0

XkXn−k =
(9r + pq)(n − 1)Xn+1 − (6q + 2p2)nYn+1 + (4q2 − 3pr + p2q)(n + 1)Xn

27r2 − p2q2 − 4q3 + 4p3r + 18pqr

See [19] for other identities.

Appendix 2: Selected Tribonacci Identities.
We present below selected identities from the literature in which p = q = r = 1. All

these identities were successfully checked by algorithm “TribSimplify”.
The following three identities come from Agronomof [1]:

Tn+m = Tm+1Tn + (Tm + Tm−1)Tn−1 + TmTn−2

T2n = T 2
n−1 + Tn(Tn+1 + Tn−1 + Tn−2)

T2n−1 = T 2
n + Tn−1(Tn−1 + 2Tn−2)

The following three identities come from Lin [8]: In their notation, we have Un = Yn+2,
with p = q = r = 1.

U4n+1U4n+3 + U4n+2U4n+4 = T 2
4n+4 − T 2

4n+2

U2
n+1 + U2

n−1 = 2(T 2
n + T 2

n+1)

T 2
n+1 − T 2

n = Un+1Un−1

The following five identities were found by Zeitlin [23]:

Tn+6+aTn+6+b = 2Tn+5+aTn+5+b + 3Tn+4+aTn+4+b + 6Tn+3+aTn+3+b

− Tn+2+aTn+2+b − Tn+aTn+b

−(1 − 2x − 3x2 − 6x3 + x4 + x6)
n∑

k=0

T 2
k xk = T 2

n+1x
n+1 + (T 2

n+2 − 2T 2
n+1)x

n+2

+ (T 2
n+3 − 2T 2

n+2 − 3T 2
n+1)x

n+3

+ (T 2
n+4 − 2T 2

n+3 − 3T 2
n+2 − 6T 2

n+1)x
n+4

− T 2
n−1x

n+5 − T 2
nxn+6 − x + x2 + x3 + x4

8
n∑

k=0

T 2
k = T 2

n+5 − T 2
n+4 − 4T 2

n+3 − 10T 2
n+2 − 9T 2

n+1 − T 2
n + 2

T−n = −WnTn + T2n
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22
n−2∑

j=0

TjTn−2−j = 5(n − 1)Tn − 2(n − 1)Tn−1 − 4nTn−2

The following two identities come from Shannon and Horadam [14]:

(SnSn+4)2 + (2(Sn+1 + Sn+2)Sn+3)2 = (S2
n + 2(Sn+1 + Sn+2)Sn+3)2

4(Sn+2Sn−1 − S2
n+2) = S2

n−1 − S2
n+3

The following eleven identities come from Waddill and Sacks [16]: In their notation,
we have Kn = Xn+1, Ln = Yn+1, and Rn = Sn−1 + Sn−2, with p = q = r = 1.

Ln = Kn−1 + Kn−2

Sn+h = Kh+1Sn + Lh+1Sn−1 + KhSn−2

S2n = Kn+1Sn + Ln+1Sn−1 + KnSn−2

S2n−1 = KnSn + (Kn−1 + Kn−2)Sn−1 + Kn−1Sn−2

Sn+h = Kh+m+1Sn−m + Lh+m+1Sn−m−1 + Kh+mSn−m−2

S2
n + S2

n−1 + 2Sn−1Sn−2 = S2S2n−2 + R2S2n−3 + S1S2n−4

∣∣∣∣∣∣

Sn Sn+h Sn+h+k

Sn+t Sn+h+t Sn+h+k+t

Sn+m Sn+h+m Sn+h+k+m

∣∣∣∣∣∣
=

∣∣∣∣
Kh Kh+k

Lh+1 Lh+k+1

∣∣∣∣ ·

∣∣∣∣∣∣

St St+1 St+2

Sm Sm+1 Sm+2

S0 S1 S2

∣∣∣∣∣∣
∣∣∣∣∣∣

Kn Kn+h Kn+h+k

Kn+t Kn+h+t Kn+h+k+t

Kn+m Kn+h+m Kn+h+k+m

∣∣∣∣∣∣
=

∣∣∣∣
Kh Kh−1

Kh+k Kh+k−1

∣∣∣∣ ·
∣∣∣∣

Km Kt

Km−1 Kt−1

∣∣∣∣

∣∣∣∣∣∣

Kn+1 Kn Kn+h

Kn+h+1 Kn+h Kn+2h

Kn+2h+1 Kn+2h Kn+3h

∣∣∣∣∣∣
= Kh−1 ·

∣∣∣∣
Kh Kh−1

K2h K2h−1

∣∣∣∣

∣∣∣∣∣∣

Kn Kn+h Kn+m

Kn+h Kn+2h Kn+h+m

Kn+m Kn+h+m Kn+2m

∣∣∣∣∣∣
= −

∣∣∣∣
Kh Km

Kh−1 Km−1

∣∣∣∣
2

∣∣∣∣∣∣

Sn+h+k+t Sn+h+k Sn+h+k+m

Rn+h+t Rn+h Rn+h+m

Sn+t Sn Sn+m

∣∣∣∣∣∣
=

∣∣∣∣
Kh+k−1 Kh+k

Lh−1 Lh

∣∣∣∣ ·

∣∣∣∣∣∣

St St+1 St+2

Sm Sm+1 Sm+2

S0 S1 S2

∣∣∣∣∣∣
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Errata.
Computer verification of the various identities encountered in the references consulted

during this research revealed a number of typographical errors in the literature. We list
the corrections below to set the record straight.

In [4], equation (1.15) should be the same as equation (4.1). Also, equation (1.16)
should be the same as equation (3.14).

In [10], equation (2.1) should read “Jn+1 = PJn + Kn”.
In [13], in equation (1.4), “t2 = P 2 + Q” should be “t2 = P 2 + 2Q”. Equation (2.2)

should read “tn = Psn−1 + 2Qsn−2 + 3Rsn−3”.
In [16], the last term of equation (21) should be “Kh+kPn−2”, not “Kn+kPn−1”.

Also, the final subscript in equation (41) should be “h− 1”, not “n− 1”. In equation (42),
“Pn+h+m” should be “Rn+h+m” and “Kn+k” should be “Kh+k”.
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