Conic Sections and Limits

Stanley Rabinowitz
Far Rockaway High School
Far Rockaway, New York

The standard form of an ellipse is

=1

(1P k)
a? b2

where the center is (h,k) and a and b are the lengths of the semi-major and semi-minor
axes. Also, a? = b? + ¢? where c is the distance from the center to a focus.
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Consider an ellipse (see Fig. 1) which passes through the origin and has its foci at the
points (2p,0) and (2¢,0). Its center is at (p +¢,0), p > 0.
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Hence the equation of the ellipse is
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It is now necessary to show that if p remains constant and ¢ — oo, the curve approaches
the shape of a parabola. Solving for 2,
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and after simplifying,
y? = dptx(2t +2p —2)/(p + )%

Letting t = 1/u,
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From this form it can be seen that as t — oo or u — 0, the equation of the curve
approaches y? = 8pzx which is the equation of a parabola. Q.E.D.
Another fact, not so obvious, is that a parabola is also a limiting case of a hyperbola
as one focus tends to infinity.
The proof is similar. The standard form of a hyperbola is
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where ¢ = a? + b2
Consider a hyperbola which passes through the origin and has its foci at the points
(2p,0) and (2t,0). See Figure 2. (Note that ¢ =t — p since p < 0 and so b*> = —4pt.)
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Its equation is
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This is exactly the same as the equation for the ellipse except that p < 0. Therefore

the rest of the proof is exactly the same and as t — oo, the curve approaches the curve
y? = 8px (which in this case is a parabola opening to the left).
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