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It is a surprising fact that x5 − x + 2759640 factors as the product

(x2 + 12x + 377) × (x3 − 12x2 − 233x + 7320).

In fact, the quintic,
x5 ± x + n, (1)

rarely factors at all. It is the purpose of this note to find all n for which (1) is reducible.
Clearly, (1) has the linear factor x + a if and only if n is of the form a5 ± a. So we

are more interested in the question of when does (1) factor as the product of a quadratic
polynomial and a cubic polynomial.

Assuming that we have the factorization

x5 + mx + n = (x2 + ax + b)(x3 + cx2 + dx + e),

we can equate like powers of x in succession to find:

c = −a

d = a2 − b

e = a(2b − a2)
m = 3a2b − a4 − b2 (2)

and
n = ab(2b − a2). (3)

Eliminating b from (2) and (3) yields

n2 + (4am − 11a5)n + a2(m + a4)(4m − a4) = 0.

This is a quadratic in n whose solution is

n =
11a5 − 4am ± 5a3

√
5a4 − 4m

2
. (4)

In order for n to be integral, we must have 5a4 − 4m = z2 for some integral z. Since
we are interested in the cases where m = ±1, we are looking to solve the Diophantine
equation z2 − 5a4 = ±4. Let x = a2. Note that x and z must have the same parity, so
that we may let y = (x + z)/2, where y is also an integer. This puts the equation in the
form

(2y − x)2 − 5x2 = ±4
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or equivalently,
y2 − xy − x2 = ±1 (5)

where it is desired that x be a perfect square.
Equation (5) brings to mind a known property of Fibonacci numbers, namely that the

integer x is a Fibonacci number if and only if there is an integer y such that y2−xy−x2 =
±1. (This is proven in [3] and [4].) Thus we see that x = a2 must be a Fibonacci number.

But it is also known that the only square Fibonacci numbers are 0, 1, and 144 (see [1]
or [2]). If a2 = 0, then n = 0 and several trivial factorizations are possible. These will be
excluded from the following discussion. Let us now consider the two cases, m = +1 and
m = −1.

Case 1: m = +1.
If a2 = 1, then a = ±1 and and using (4) to find n gives n = ±1 or n = ±6. If

a2 = 144 then a = ±12, but the values of n obtained do not make 5a4 − 4 a perfect square
so are ruled out.

Case 2: m = −1.
If a2 = 1, then a = ±1 and n = 0 or n = ±15. If a2 = 144, then a = ±12 and

n = ±22440 or n = ±2759640.

We can summarize our results by the following theorems:
Theorem 1: The only integral n for which x5 + x + n factors into the product of an
irreducible quadratic and an irreducible cubic are n = ±1 and n = ±6. The factorizations
are

x5 + x ± 1 = (x2 ± x + 1)(x3 ∓ x2 ± 1)

x5 + x ± 6 = (x2 ± x + 2)(x3 ∓ x2 − x ± 3).

Theorem 2: The only integral n for which x5 − x + n factors into the product of an irre-
ducible quadratic and an irreducible cubic are n = ±15, n = ±22440, and n = ±2759640.
The factorizations are

x5 − x ± 15 = (x2 ± x + 3)(x3 ∓ x2 − 2x ± 5)

x5 − x ± 22440 = (x2 ∓ 12x + 55)(x3 ± 12x2 + 89x ± 408)

x5 − x ± 2759640 = (x2 ± 12x + 377)(x3 ∓ 12x2 − 233x ± 7320).
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