Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 3 (2019), pp.X-X
Received XX XXX XXX. Published on-line XX XXX XXX
web: http://www.sangaku-journal.eu/
© The Author(s) This article is published with open access ${ }^{1}$.

Relationships Between Six Circumcircles

Stanley Rabinowitz
545 Elm St Unit 1, Milford, New Hampshire 03055, USA
e-mail: stan.rabinowitz@comcast.net
web: http://www.StanleyRabinowitz.com/

Abstract. If P is a point inside $\triangle A B C$, then the cevians through P divide $\triangle A B C$ into small triangles. We give theorems about the relationship between the radii of the circumcircles of these triangles.

Keywords. Euclidean geometry, triangle geometry, excircles, exradii, cevians.
Mathematics Subject Classification (2010). 51M04.

Let P be any point inside a triangle $A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1.

Figure 1. numbering of the six triangles
The relationships between the radii of the circles inscribed in these triangles was investigated in [6]. The relationships between the radii of certain excircles associated with these triangles was investigated in [5]. In this paper, we will investigate the relationships between the radii of the circles cicumscribed about these triangles.

[^0]We will make use of The Extended Law of Sines which states that if a, b, and c are the lengths of the sides of a triangle opposite angles A, B, and C, then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$

where R is the circumradius of $\triangle A B C$.
Theorem 1. Let P be any point inside $\triangle A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let R_{i} be the circumradius of T_{i}. Then $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$.

Proof. By The Extended Law of Sines in $\triangle P B D$, we have

$$
R_{1}=\frac{B D}{2 \sin \angle B P D},
$$

with similar expressions for the other R_{i}. Thus,

$$
R_{1} R_{3} R_{5}=\frac{B D}{2 \sin \angle B P D} \cdot \frac{C E}{2 \sin \angle C P E} \cdot \frac{A F}{2 \sin \angle A P F}
$$

and

$$
R_{2} R_{4} R_{6}=\frac{D C}{2 \sin \angle D P C} \cdot \frac{E A}{2 \sin \angle E P A} \cdot \frac{F B}{2 \sin \angle F P B} .
$$

But $B D \cdot C E \cdot A F=D C \cdot E A \cdot F B$ by Ceva's Theorem. Also, angles $B P D$ and $E P A$ are vertical angles, so they are congruent and their sines are equal. Similarly, $\sin \angle C P E=\sin \angle F P B$ and $\sin \angle A P F=\sin \angle D P C$. Therefore, we conclude that $R_{1} R_{3} R_{5}=R_{2} R_{4} R_{6}$.

We have some additional results for specific locations of point P.
Theorem 2. Let O be the circumcenter of $\triangle A B C$ and assume that O lies inside $\triangle A B C$. The cevians through O divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let R_{i} be the circumradius of T_{i}. Then $R_{1}=R_{2}, R_{3}=R_{4}$, and $R_{5}=R_{6}$.

Figure 2. Circumcenter: $R_{1}=R_{2}$

Proof. By symmetry, it suffices to show that $R_{1}=R_{2}$ (Figure 2). Since O is the circumcenter of $\triangle A B C, O B=O C$. Angles $O D B$ and $O D C$ are supplementary, so their sines are equal. Thus, by The Extended Law of Sines, we have

$$
R_{1}=\frac{O B}{2 \sin \angle O D B}=\frac{O C}{2 \sin \angle O D C}=R_{2}
$$

as required.
Theorem 3. Let N be the Nagel Point of $\triangle A B C$. The cevians through N divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let R_{i} be the circumradius of T_{i}. Then $R_{1}=R_{4}, R_{2}=R_{5}$, and $R_{3}=R_{6}$.

Figure 3. Nagel Point: $R_{1}=R_{4}$
Note: The Nagel Point of a triangle is the point of concurrence of $A D, B E$, and $C F$, where D, E, and F are the points where the excircles of $\triangle A B C$ touch the sides $B C, C A$, and $A B$, respectively [1, p. 160]. The Nagel point is usually denoted $N a$, but here we will name it N, for simplicity.

Proof. First note that by symmetry, it suffices to show that $R_{1}=R_{4}$ (Figure 3). If $B C=a, C A=b, A B=c$, and $s=(a+b+c) / 2$, then it is known that $B D=A E=s-c[1$, p. 88]. Thus, by The Extended Law of Sines and the fact that $\angle B N D=\angle E N A$, we have

$$
R_{1}=\frac{B D}{2 \sin \angle B N D}=\frac{A E}{2 \sin \angle E N A}=R_{4}
$$

as required.
Theorem 4. Let H be the orthocenter of $\triangle A B C$. The cevians through H divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let C_{i} be the circumcircle of T_{i}. Let R_{i} be the radius of C_{i}. Then $R_{1}=R_{6}, R_{2}=R_{3}$, and $R_{4}=R_{5}$.

Proof. By symmetry, it suffices to show that $R_{1}=R_{4}$ (Figure 4), i.e., that C_{1} and C_{6} coincide. Since $\angle B D H+\angle H F B=180^{\circ}$, quadrilateral $B D H F$ is cyclic. Thus, the circle through points B, D, and H is the same as the circle through points B, F, and H.

Figure 4. Orthocenter: $R_{1}=R_{6}$
We also have some interesting result concerning the centers of the six circumcircles. We will use the notation [XYZ] to denote the area of $\triangle X Y Z$.
Theorem 5. Let P be any point inside $\triangle A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let O_{i} be the circumcenter of T_{i}. Then $\left[O_{1} O_{3} O_{5}\right]=\left[O_{2} O_{4} O_{6}\right]$ (Figure 5).

Figure 5. Two triangles have same area
The following proof is due to Dubrovsky [2].
Proof. Since O_{1} is the circumcenter of $\triangle B P D$, it must lie on the perpendicular bisector of $B P$. The same remark holds true for O_{6}. Therefore, $O_{1} O_{6} \perp B P$. In the same way, $O_{6} O_{5} \perp P F, O_{5} O_{4} \perp A P, O_{4} O_{3} \perp P E, O_{3} O_{2} \perp C P$, and $O_{2} O_{1} \perp P D$. Hence $O_{1} O_{6}\left\|O_{3} O_{4}, O_{6} O_{5}\right\| O_{2} O_{3}$, and $O_{5} O_{4} \| O_{1} O_{2}$. Therefore, hexagon $O_{1} O_{2} O_{3} O_{4} O_{5} O_{6}$ has its opposite sides parallel. But it is known [3] that if $A B C D E F$ is a hexagon with its opposite sides parallel, then $[A C E]=[B D F]$. Thus $\left[O_{1} O_{3} O_{5}\right]=\left[O_{2} O_{4} O_{6}\right]$.

Theorem 6. Let M be the centroid of $\triangle A B C$. The medians through M divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let O_{i} be the circumcenter of T_{i}. Then $O_{1} O_{4}=O_{2} O_{5}=O_{3} O_{6}$. (Figure 6).

Figure 6. Red segments are congruent

Proof. This follows from Proposition 4 of [4].
The following two results come from [4].
Theorem 7. Let P be any point inside $\triangle A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let O_{i} be the circumcenter of T_{i}. Then the points O_{i} lie on a circle if and only if either P is the centroid of $\triangle A B C$ (Figure 7) or P is the orthocenter of $\triangle A B C$ (in which case $O_{6}=O_{1}, O_{2}=O_{3}$, and $O_{4}=O_{5}$).

Figure 7. O_{i} lie on a circle when $P=M$

Theorem 8. Let P be any point inside $\triangle A B C$. The cevians through P divide $\triangle A B C$ into six smaller triangles, labeled T_{1} through T_{6} as shown in Figure 1. Let O_{i} be the circumcenter of T_{i}. Then the points O_{i} lie on a conic (Figure 8).

Figure 8. O_{i} lie on a conic

Proof. Since $O_{1} O_{6}\left\|O_{3} O_{4}, O_{6} O_{5}\right\| O_{2} O_{3}$, and $O_{5} O_{4} \| O_{1} O_{2}$, the result follows from the converse of Pascal's Theorem.

References

[1] Nathan Altshiller-Court, College Geometry, 2nd edition, Dover Publications, New York, 2007.
[2] Vladimir Dubrovsky, Solution to Problem 3425. Romantics of Geometry, August, 2019. https://www.facebook.com/groups/parmenides52/permalink/2384338005013225/
[3] Mark Kantrowich, Solution to Problem from the 1984 Annual Greek High School Competition. Crux Mathematicorum, 11(1985)184. https://cms.math.ca/crux/backfile/Crux_v11n06_Jun.pdf
[4] Alexei Myakishev and Peter Y. Woo, Forum Geometricorum, 3(20035)7-63. http://forumgeom.fau.edu/FG2003volume3/FG200305.pdf
[5] Stanley Rabinowitz, Relationship Between Six Excircles. Sangaku Journal of Mathematics, submitted.
[6] Stanley Rabinowitz, Relationship Between Six Incircles. Sangaku Journal of Mathematics, 3(2019)51-66. http://www.sangaku-journal.eu/2019/SJM_2019_51-66_Rabinowitz.pdf

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

