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Abstract. If P is a point inside 4ABC, then the cevians through P divide
4ABC into six small triangles. We give theorems about the relationship between
the radii of the circles inscribed in these triangles and the lengths of the segments
formed along the sides of the triangle.
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Let P be any point inside a triangle ABC. The cevians through P divide 4ABC
into six smaller triangles, labeled T1 through T6 as shown in Figure 1.

Figure 1. numbering of the six triangles
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2 Relationships Between Six Circles Associated with a Triangle

Let the radius of the circle inscribed in triangle Ti be ri. The relationships between
the ri was investigated in [1]. For special points, P , such as the centroid, the cir-
cumcenter, and the orthocenter, formulas were found relating the ri, independent
of the shape of the triangle. No such formula was found when P is an arbitrary
point inside the triangle.

In this paper, we will investigate the relationships between the ri and the lengths
of the segments formed by points D, E, and F on the sides of the triangle.

We will use the following notation throughout this paper. Let Ki be the area of
Ti. Let si be the semiperimeter of Ti. Let Oi be the incenter of Ti. Let AB = c,
BC = a, and CA = b. The cevians will be AD, BC, and CE, and the twelve
segments formed by them with each other and the sides of the triangle have lengths
as shown in Figure 2.

Figure 2. lengths of the twelve segments

The purpose of this paper is to give a simple formula connecting the ri and a1,
a2, b1, b2, c1, and c2.

We start with several lemmas. The following result was stated by van Aubel in
1882 [3] and is often called Van Aubel’s Theorem for Triangles [4].

Lemma 1 (Van Aubel’s Theorem for Triangles). Let P be any point inside4ABC
and let the cevians through P be AD, BE, and CF (Figure 3). Then

AF

FB
+

AE

EC
=

AP

PD
.

Figure 3.
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An immediate consequence of Van Aubel’s Theorem for Triangles is the following
lemma.

Lemma 2. Using the notation of Figure 2, we have the following equations.

e = f

✓
c2

c1
+

a1

a2

◆
, g = h

✓
b1

b2
+

a2

a1

◆
, k = j

✓
c1

c2
+

b2

b1

◆
.

Lemma 3. The Ki can be expressed as multiples of K1 using the lengths shown
in Figure 2. In particular,

K2 = K1

✓
a2

a1

◆
, K3 = K1

✓
(a1 + a2)f

a1e

◆
, K4 = K1

✓
(a1 + a2)b2f

a1b1e

◆
,

K5 = K1

✓
(a1 + a2)(b1 + b2)fh

a1b1eg

◆
, K6 = K1

✓
(a1 + a2)(b1 + b2)c2fh

a1b1c1eg

◆
.

Proof. If two triangles have the same altitude, then their areas are proportional
to their bases. This gives the following proportions.

K2

K1
=

a2

a1
,

K3

K1 + K2
=

f

e
,

K4

K3
=

b2

b1
,

K5

K3 + K4
=

h

g
,

K6

K5
=

c2

c1
.

Some algebraic manipulation then gives us the desired equations. ⇤

Theorem 1. Let P be any point inside 4ABC. Then
a2c2

r1
+

a2c1

r3
+

a1c1

r5
=

a2c2

r2
+

a2c1

r4
+

a1c1

r6
.

Proof. Let

S = a2c2

✓
1

r1
� 1

r2

◆
+ a2c1

✓
1

r3
� 1

r4

◆
+ a1c1

✓
1

r5
� 1

r6

◆
.

We want to show that S = 0. Use the formula for the inradius of a triangle to
replace ri with Ki/si. Then replace each si with the semiperimeter of triangle Ti

as found in Figure 2.

S = a2c2

✓
a1 + e + j

2K1
� a2 + g + j

2K2

◆
+ a2c1

✓
b1 + f + g

2K3
� b2 + f + k

2K4

◆

+ a1c1

✓
c1 + h + k

2K5
� c2 + e + h

2K6

◆
.

Next, eliminate K2, K3, K4, K5, and K6 using Lemma 3. Bring all terms over the
common denominator (a1 +a2)a2(b1 +b2)b2fhK1. We get the following expression
for the numerator.

N = a2
2b2(b1 + b2)c

2
2fh(e + j)

� a1a2(b1 + b2)c2h
�
�b2(c2f(e� g) + c1e(f + g)) + b1c1e(f + k)

�

� a2
1b2

�
b2c

2
2fh(g + j) + b1(c

2
1eg(e + h) + c2

2fh(g + j)� c1c2eg(h + k))
�
.

It will su�ce to prove that N = 0. In the expression for N , eliminate e, g, and k
using Lemma 2. Factoring the resulting expression, we get

N = (a2b2c2 � a1b1c1)⇥ (another factor).

But a2b2c2 = a1b1c1 by Ceva’s Theorem. Thus, N = 0. ⇤
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Theorem 2. Let P be any point inside 4ABC. Then

a1b1

r1
+

a2b2

r3
+

a1b2

r5
=

a1b1

r2
+

a2b2

r4
+

a1b2

r6
.

Proof. This is just Theorem 1 applied to 4BCA. Alternatively, we can start with
the equation in Theorem 1,

a2c2

r1
+

a2c1

r3
+

a1c1

r5
=

a2c2

r2
+

a2c1

r4
+

a1c1

r6
,

and apply Ceva’s Theorem to get

a1b1c1

b2r1
+

a2c1

r3
+

a1c1

r5
=

a1b1c1

b2r2
+

a2c1

r4
+

a1c1

r6
.

Multiplying both sides of the equation by b2/c1 gives the desired result. ⇤

Similarly, we can apply Theorem 1 to 4CAB to get the following.

Theorem 3. Let P be any point inside 4ABC. Then

b1c2

r1
+

b1c1

r3
+

b2c2

r5
=

b1c2

r2
+

b1c1

r4
+

b2c2

r6
.

The result in Theorem 1 is so elegant that it is unlikely that it is true only because
the complicated expression for N in the proof just happened to have a2b2c2�a1b1c1

as a factor.

Open Question 1. Is there a simpler proof of Theorem 1 that gives more insight
into why the result is true, without involving a lot of computation?

The reader may wonder how I found Theorem 1. Here is the procedure that was
used.

Procedure: I started with a triangle (Figure 2) whose six segments had symbolic
lengths a1, a2, b1, b2, c1, and c2. Then, using Stewart’s Theorem, I computed AD,
BE, and CF in terms of these six variables. Then, using Van Aubel’s Theorem
for Triangles, I computed e, f , g, h, j, and k. I used these values to compute
the si. Then, using Heron’s Formula for the area of a triangle, I computed the
Ki. Finally, using the formula r = K/s, I computed the ri. The formulas were
lengthy, involving many square roots, and the computations had to be done by
computer. Then I guessed that there was a relationship involving rt

i for some
fixed t. I varied t from �6 to 6 (excluding t = 0). For each t, I formed the
six expressions Ei = rt

i , for i = 1, 2, ..., 6. Now I picked values for a1, a2, b1,
c1, and c2 that were distinct primes. In particular, I chose a1 = 11, a2 = 3,
b1 = 7, c1 = 5, and c2 = 13. The value of b2 was then determined by Ceva’s
Theorem. Next, I evaluated each of the Ei to 50 decimal places. I then used the
MathematicaR� function FindIntegerNullVector to see if there was any linear
relationship with small integer coe�cients between these six real numbers. For
t = �1, the relationship

39E1 � 39E2 + 15E3 � 15E4 + 55E5 � 55E6 = 0

was found. Comparing the prime factorizations of the coe�cients 39 = 3 · 13,
15 = 3 · 5, and 55 = 5 · 11 against the chosen segments lengths (a1 = 11, a2 = 3,
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b1 = 7, c1 = 5, and c2 = 13) suggested that the coe�cients were a2c2, a2c1, and
a1c1. Surprisingly, b1 and b2 did not seem to be involved. Varying b1 to have
other values did not change the linear relationship found. The same pattern was
observed when I tried other prime numbers for a1, a2, c1, and c2. This made the
conjecture very plausible.

The same procedure was used to find the following theorem.

Theorem 4. Let P be the incenter of 4ABC. Then

b� c

r1
+

b� c

r2
+

c� a

r3
+

c� a

r4
+

a� b

r5
+

a� b

r6
= 0.

Proof. Let

S = (b� c)

✓
1

r1
+

1

r2

◆
+ (c� a)

✓
1

r3
+

1

r4

◆
+ (a� b)

✓
1

r5
+

1

r6

◆
.

We want to prove that S = 0. Starting with the sides of 4ABC, (a, b, and c)
we can compute a1, a2, b1, b2, c1, and c2 using the Angle Bisector Theorem
(Euclid VI.3). For example, a1 = ac/(b + c). Then we use Stewart’s Theorem to
compute AD, BE, and CF . Then we again use the Angle Bisector Theorem to
compute e, f , g, h, j, and k. We get

e =

p
ac(a2 � b2 + 2ac + c2)

a + b + c
and f =

b
p

ac(a2 � b2 + 2ac + c2)

(b + c)(a + b + c)
,

with similar expressions for g, h, j, and k. In the formula for S, replace ri with
Ki/si. Then, eliminate K2, K3, K4, K5, and K6 using Lemma 3. We get

S =
a3(s5 � s4) + b3(s1 � s6) + c3(s3 � s2)� bc2s1 � a2cs3 + ac2s4 + ba2s6

b(b + c)K1
.

Now replace each si with the semiperimeter of triangle Ti using the values found
for e, f , g, h, j, and k. After simplifying the resulting expression, we find that
S = 0. ⇤

The following theorem was suggested by Theorem 8.4 of [2].

Theorem 5. Let P be the incenter of 4ABC. Then

cos �

r1
+

cos↵

r3
+

cos�

r5
=

cos�

r2
+

cos �

r4
+

cos↵

r6

where m\CAB = 2↵, m\ABC = 2�, and m\BCA = 2� (Figure 4).

The proof is similar to the proof of Theorem 4, so is omitted. The cosines are
computed using the Law Of Cosines.

Open Question 2. Are there simpler proofs for Theorems 4 and 5 that don’t
involve a lot of computation?
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Figure 4.
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