Reprinted from the Pi Mu Epsilon Journal 4.6(1967)260.

177. Proposed by C. S. Venkataraman, Sree Kerala Varma College, Trichur, South India.

If s is the semi-perimeter and R, r, r_1 , r_2 , and r_3 are the circum-, in-, and ex-radii, respectively, of a triangle, prove that

$$\frac{R}{r^2} \geq \frac{2s^2}{r_1 r_2 r_3} .$$

Solution by Stanley Rabinowitz, Polytechnic Institute of Brooklyn.

We start with the known inequality, R \geq 2r, with equality if and only if the triangle is equilateral. It is also known that rr₁r₂r₃ = K where K is the area of the tri-

angle (see N. A. Court, College Geometry, p. 79). Since also K = rs, we have $rr_1r_2r_3 = r^2s^2$. Finally,

$$\frac{R}{r^2} \geq \frac{2}{r} = \frac{2s^2}{r_1 r_2 r_3}$$
.