Reprinted from the Pi Mu Epsilon Journal 4.7(1967)297.

183. Proposed by R. Penney, Ford Scientific Laboratory.

$$r_0(r_1r_2 + r_2r_3 + r_3r_1) = 0 ,$$

$$r_1(r_0r_2 + r_0r_3 - r_2r_3) = 0 ,$$

$$r_2(r_0r_3 + r_0r_1 - r_3r_1) = 0 ,$$

$$r_3(r_0r_1 + r_0r_2 - r_1r_2) = 0 ,$$

Show that at least one of the quantities r_0, r_1, r_2, r_3 vanishes.

Solution by Stanley Rabinowitz, Polytechnic Institute of Brooklyn. If none of the r's vanish, then the expressions in the parenthesis must vanish. These conditions may then be written as

(1)
$$1/r_1 + 1/r_2 + 1/r_3 = 0$$
,

(2)
$$1/r_2 + 1/r_3 = 1/r_0$$
,

(3)
$$1/r_3 + 1/r_1 = 1/r_0$$
,

(4)
$$1/r_1 + 1/r_2 = 1/r_0$$
.

Adding up (2), (3), and (4) and using (1) gives $3/r_0 = 0$ which is impossible. Hence, at least one of the r's must vanish.