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The Volume of an n-simplex with Many Equal Edges

Stanley Rabinowitz
Westford, Massachusetts

It is well known that the volume of a regular n-simplex with edge length s is

sn

n!

√
n + 1
2n

.

But suppose one edge has length b and all the other edges have length a. Is there a simple
formula for the volume of the simplex in that case? What if all the edges incident at a
given vertex have length b and all the other edges have length a?

It is these questions that motivated the investigation that led to the following result:

Theorem. Let K be an n-simplex in En. Suppose the vertices of K are colored with
r colors, c1, c2, . . ., cr (1 ≤ r ≤ n + 1). Let the number of vertices colored ci be mi

(1 ≤ mi ≤ n + 1). It is given that if an edge has both its vertices the same color, ci, the
length of that edge is ai. If the two vertices of an edge have different color, the edge has
length s. Then the volume of K is

1
n!2n/2

r∏
i=1

ami−1
i

√√√√(−1)r+1

(
r∏

i=1

(
(mi − 1)a2

i − mis2
)) r∑

i=1

mi

(mi − 1)a2
i − mis2

.

Proof. The volume, V , of an n-simplex in terms of the edge lengths, {aij}, is determined
by the formula

(−1)n+12n(n!)2V 2 = D (1)

where D is given by the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a2
12 a2

13 · · · a2
1n a2

1,n+1 1
a2
21 0 a2

23 · · · a2
2n a2

2,n+1 1
a2
31 a2

32 0 · · · a2
3n a2

3,n+1 1
...

. . .
a2

n+1,1 a2
n+1,2 a2

n+1,3 · · · a2
n+1,n 0 1

1 1 1 · · · 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(See [1] for a proof.)
Now, let us assign the edge lengths as specified in the theorem, except that to make

the computations simpler, let us assume the edge lengths are
√

ai and
√

s (instead of ai

and s). A simple transformation then will change the result we get into the form required
by the statement of the theorem.
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We find that the resulting determinant consists of r square blocks along the main
diagonal and the last row and column being the same as shown above. The ith block has
the form




0 ai ai ai · · · ai ai

ai 0 ai ai · · · ai ai

ai ai 0 ai · · · ai ai

ai ai ai 0 · · · ai ai
...

. . .
ai ai ai ai · · · 0 ai

ai ai ai ai · · · ai 0




and every other element in the determinant has value s. For example, if n = 11, r = 3,
a1 = a, m1 = 4, a2 = b, m2 = 5, a3 = c, and m3 = 3, then the determinant is as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a a a s s s s s s s s 1
a 0 a a s s s s s s s s 1
a a 0 a s s s s s s s s 1
a a a 0 s s s s s s s s 1
s s s s 0 b b b b s s s 1
s s s s b 0 b b b s s s 1
s s s s b b 0 b b s s s 1
s s s s b b b 0 b s s s 1
s s s s b b b b 0 s s s 1
s s s s s s s s s 0 c c 1
s s s s s s s s s c 0 c 1
s s s s s s s s s c c 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We now proceed to evaluate this determinant by applying elementary row and column
operations. In each group of mi rows (i = 1, . . . , r), we subtract every row (except the last
row) from the row above it. Then, in each group of mi columns, we subtract each column
(except the last column) from the column to its left. We wind up with a matrix where
each square block along the diagonal has been replaced by a matrix whose diagonal entries
are all −2ai, (except for the lower right entry with value 0), and whose minor diagonals
just below and above the main diagonal all have value ai. Furthermore, all the s entries
have disappeared with the exception of those whose rows and columns are at the end of
the groups of mi. The 1’s in the last row and column have also turned to 0’s except those
occurring at the ends of groups of mi entries.
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In our example, the resulting determinant is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2a a 0
a −2a a 0

a −2a a 0
a 0 s s 1

−2b b 0
b −2b b 0

b −2b b 0
b −2b b 0

s b 0 s 1
−2c c 0
c −2c c 0

s s c 0 1
0 0 0 1 0 0 0 0 1 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

All missing elements in the display are 0’s.
In each square block, we can remove the ai’s situated along the two minor diagonals

by adding in the appropriate multiple of the preceding row or column, in succession, top
to bottom and left to right. In our example, we would multiply the first row by 1/2 and
add it to the second row, then multiply the first column by 1/2 and add it to the second
column. This leaves us with ( 1

2 − 2)a = − 3
2a in row 2 column 2. Thus, we multiply row 2

by 2/3 and add it to row 3. Then we multiply column 2 by 2/3 and add it to column 3.
This leaves us with − 4

3a in row 3 column 3, etc.
In general, the multipliers will be 1/2, 2/3, 3/4, . . . (mi − 1)/mi. The final numbers

along the main diagonal will be −2ai/1,−3ai/2,−4ai/3, . . . ,−mia/(mi−1), (mi−1)a/mi.
In our example, we get

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2a
1 0

−3a
2 0

−4a
3 0

3a
4 s s 1

−2b
1 0

−3b
2 0

−4b
3 0

−5b
4 0

s 4b
5 s 1

−2c
1 0

−3c
2 0

s s 2c
3 0

0 0 0 1 0 0 0 0 1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Most of the entries on the major diagonal now have all 0’s in their rows. We can
thus expand the determinant by minors along these rows and see that the value of the
determinant is

r∏
i=1

(−ai)mi−1mi

times the following determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(m1−1)a1
m1

s s · · · s 1

s (m2−1)a2
m2

s · · · s 1

s s (m3−1)a3
m3

· · · s 1
...

. . .
s s s · · · (mr−1)ar

mr
1

1 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This determinant is simplified by subtracting s times the bottom row from every other
row. We are left with a determinant whose last row and column are all 1’s (except for the
0 in the lower right corner). The remaining elements all lie along the main diagonal, and
are (mi−1)ai

mi
− s, i = 1, 2, . . . , r. In our example, this comes out to

∣∣∣∣∣∣∣∣

3a
4 − s 0 0 1

0 4b
5 − s 0 1

0 0 2c
3 − s 1

1 1 1 0

∣∣∣∣∣∣∣∣
.

Finally, this determinant is evaluated by getting rid of the 1’s in the final row. To do that,
multiply each of the first r rows by the reciprocal of the diagonal element and subtract the
result from the last row. This changes the 1’s in the last row to 0’s and changes the 0 to

−
r∑

i=1

(
(mi − 1)ai

mi
− s)−1.

The determinant is now upper triangular and so its value is the product of the diagonal
elements. We have thus found that

D =
r∏

i=1

(−ai)mi−1
(
(mi − 1)ai − mis

) (
−

r∑
i=1

mi

(mi − 1)ai − mis

)
.

Comparing this with formula (1) and noting that
∑r

i=1 mi = n + 1, we see that we can
move the (−1)n+1 to the right hand side and wind up with (−1)r+1. Then, solving for V 2

and taking the square root of both sides proves our theorem.
Letting r = 2 gives us two interesting corollaries.
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Corollary 1. An n-simplex in En (n ≥ 1) has one edge of length b. Every other edge
has length a. Then the volume of the simplex is

ban−2

n!2n/2

√
2na2 − (n − 1)b2.

Corollary 2. An n-simplex in En (n ≥ 1) has every edge incident at a given vertex of
length a. Every other edge has length b. Then the volume of the simplex is

bn−1

n!2n/2

√
2na2 − (n − 1)b2.

Reference

[1] D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions. Dover
Publications, Inc. New York: 1958.


