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Abstract. We present an algorithm for efficiently proving or disproving symmet-
ric homogeneous polynomial triangle inequalities using Blundon’s Fundamental
Inequality. If the inequality contains an undetermined constant k, the algorithm
automatically finds the best value of k for which the inequality is true. The
algorithm can also find all triangles for which equality holds and can exhibit a
counterexample when presented with a false inequality.
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1. INTRODUCTION

Let the sides of a triangle be a, b, and ¢, and let » and R be the inradius and
circumradius, respectively. Let K denote the area of the triangle and let s denote
its semiperimeter.

There is a vast amount of literature concerning inequalities between these quan-
tities. A typical inequality is

(1) a® 4+ b* 4 2 < 8R* + 4r?

which is inequality 5.16 in [4]. Compendiums of such inequalities can be found in
[4], [20], and [10].

It is the purpose of this paper to present an efficient algorithm for proving such
inequalities. The algorithm handles symmetric homogeneous inequalities involving
rational functions of the quantities a, b, ¢, R, r, s, and K, as well as other elements
of a triangle, such as the exradii and trigonometric functions of the angles of the
triangle.

IThis article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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The algorithm can also discover new inequalities if a suspected inequality is of a
form containing an undetermined constant k, such as

1+1+1<1 1+1+1 2 1
a b ¢~ 3R r kE\R r

which was proposed as a problem by Huang in [16] and discussed in [42].
Our algorithm found that the best constant k that makes this inequality true is

k=2 (1+V2+ V1)

which agrees with the value found by Chen in [9].

2. BACKGROUND INFORMATION

The types of inequalities we are interested in fall into the study of real closed fields.
An inequality such as 2 + y? + 22 > 2y + yz + 22 can be formally represented in
such a field by the formula

(Vz)(Vy)(V2) ((z = 0) A (y = 0) A (2 >0) = 2° +y° + 2> > zy + yz + 2x) .

The symbols such as 3 and V are known as quantifiers. In 1930, Tarski discovered
a decision procedure for the formal theory of real closed fields. His method was
first published in 1948 [31]. Tarski’s method involves successive elimination of
quantifiers using Sturm sequences. This method can be used to automatically
prove all the inequalities discussed in this paper as well as many problems in
Euclidean geometry. Unfortunately, Tarski’s algorithm, although totally effective,
is completely impractical given the state of the art of computers today. The same
holds true for an improvement given by Seidenberg, [28].

Over the years, improved methods have been devised for effectively proving results
in the theory of real closed fields. For example, Collins [I3] devised a method that
employs cylindrical decomposition using Grobner bases to eliminate quantifiers.
See Davenport [14], section 3.2, for an exposition. See also [12].

The state of the art has improved so much that modern computer algebra systems,
such as Mathematica, can now automatically solve large classes of systems of equa-
tions and inequalities. According to the Mathematica technical documentation,
their function Solve uses cylindrical algebraic decomposition and Grébner basis
methods [41] using an efficient version of the Buchberger Algorithm [7]. Solve can
always, in principle, solve any system of polynomials equations and inequalities
over the real domain [40].

For example, let us see how we can use Mathematica to prove inequality . Using
the definitions s = (a +b+¢)/2, K = /s(s —a)(s — b)(s — ¢), R = abc/(4K),
and r = K/s, we can issue the following Mathematica commands.

(at+b+c)/2;

Sqrt[s(s-a) (s-b) (s-c)];

= axbx*c/(4K) ;

= K/s;

inequality = a"2+b"2+c”2 <= 8R"2+4r"2;

triang = a>0 && b>0 && c>0 && a+b>c && b+c>a && c+a>b;
Simplify[inequality, triang]

H X n
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The final Simplify command tells Mathematica to simplify the specified inequal-
ity, subject to the specified restrictions that the variables a, b, and ¢ are positive
real numbers that satisfy the triangle inequality.

In under a tenth of a second, Mathematica returns the response
True
indicating that the inequality is true.

As the complexity of the inequality increases, the running time becomes longer.
For example, consider the inequality

V3 111

SR 12r ~a b e

found in [42]. It took version 12.0 of Mathematica 4.5 minutes to prove this in-
equality using the same procedure running on a 3.5 GHz iMac. As the complexity
of the inequality increases, the running time gets even larger.

For reference purposes, we use the name “Algorithm M” to refer to the use of the
Simplify command in Mathematica to solve inequalities.

Algorithm M [Use the Simplify command to prove an inequality]

INPUT: We are given an inequality ineq and a constraint constraint.
STEP 1: Issue the following Mathematica command.

Simplify[ineq, constraint]

OUTPUT: The algorithm returns True or False indicating whether or not the
given inequality is true subject to the specified constraint.

Sometimes the FullSimplify command must be used.

The method of cylindrical decomposition may be too slow for proving the types of
inequalities we are interested in. That is because our triangle inequalities generally
involve three quantifiers, and these methods attempt to eliminate one quantifier
at a time. Each elimination step causes an expression explosion. In our case, the
expressions involved are symmetric; so a method that removes one quantifier at a
time is bound to be non-optimal.

Blundon and others ([3], [5], [21]) have attacked the problem by first expressing
the proposed inequality in terms of R, r, and s. We use Blundon’s algorithm
to provide a more efficient algorithm for proving triangle inequalities than the
algorithms built in to Mathematica.

3. THEORETICAL BASIS FOR THE ALGORITHM

In 1965, Blundon [3] showed that a triangle with circumradius R, inradius r, and
semiperimeter s exists if and only if R, r, and s satisfy what is now known as
Blundon’s Fundamental Inequality:

(2) s2(18Rr — 9r? — s?)% < (s — 3r? — 12Rr)3,

Since r > 0, this is algebraically equivalent to the inequality

(3) 4R(R —2r)® > (s* = 2R* — 10Rr + 1)
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Given a proposed homogeneous inequality involving R, r, and s, only the ratios
of R, r, and s are of interest. Following a variation of Bottema [5], we can let
x =1/R and y = s/R. Applying these substitutions to inequality , Blundon’s
Fundamental Inequality becomes

(4) (2% + y*)? + 122% — 202y? + 4827 — 4y* + 642 < 0

The region determined by inequality and z > 0 and y > 0 is called the
Fundamental Region. The region in the xy-plane representing (x,y) values that
satisfy a given inequality is called the inequality region.

The Basis for Blundon’s algorithm. A triangle inequality, expressed in terms
of x and y will be true if and only if every point in the fundamental region satisfies
the given inequality.

Alternative Description. An inequality expressed in terms of x and y will be
true if and only if the inequality region contains the fundamental region.

Each point in the xy-plane corresponds to an equivalence class of triples (R, 7, s).
Those pairs (z,y) that determine a triangle lie inside the region, R, bounded by
the y-axis and the hypocycloid whose parametric representation is given by

4t - 1)
(t2 + 1)2
8t
¥y= (t2 +1)2

(5)

with ¢ > 1. Note that our ¢ is the reciprocal of the ¢ used in [3]. The region R
has cusps at (0,0), (0,2), and (1/2,3v/3/2). The region R is shown in Figure

The points on the bounding hypocycloid correspond to isosceles triangles. The
point at (1/2,3+v/3/2) corresponds to an equilateral triangle. The points on the
y-axis from (0,0) to (0,2) correspond to degenerate triangles.

y (13J§
2’ 2

(0,2)

X

(0,0)

F1GURE 1. Fundamental Region
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According to Blundon’s original paper, [3], the geometrical significance of the
parameter t is that t is the cotangent of one-half of the base angle of the isosceles
triangle corresponding to t.

According to [20, p. 9], the equation for the upper boundary of the fundamental
region is

1
y:\/2+10m—x2+2(1—2x)3/2, O<x§§,
and the equation for the lower boundary is
1
y=1/2+100 — a2 —2(1 - 20)%2,  0<u< 5.

4. INPUT TO THE ALGORITHM

The following symbols will be allowed in the inequalities to be proven. Their
meaning is given in the following table.

Input Variables
Notation Description
a,b,c The sides of the triangle
A B,C The angles of the triangle
K The area of the triangle
s The semiperimeter of the triangle
r The inradius of the triangle
R The circumradius of the triangle
h(a),h(b),h(c) | The altitudes of the triangle
m(a), m(b),m(c) | The medians of the triangle
w(a),w(b),w(c) | The angle bisectors of the triangle
r(a),r(b),r(c) The exradii of the triangle
g(a),g(b),g(c) The Gergonne cevians of the triangle
n(a),n(b),n(c) | The Nagel cevians of the triangle

5. SUPPORT ALGORITHMS

Before describing our main algorithm, we present some algorithms that will be
needed later.

Algorithm T [Remove Trigonometric Functions]
This algorithm removes trigonometric functions from an expression.

INPUT: Any expression containing the standard trigonometric functions of in-
teger linear combinations of constants and the variables A, B, and C'. Examples:
cos” A + sin(3B + 5C) and csc(2A + 7/5). Also permitted are expressions of
the form tan 7, sin? 5 5 where w is any integer linear combination of
constants and the variables A, B, and C.

STEP 1: [Remove Inverse Trigonometric Functions|

The trigonometric functions sec, csc, and cot are replaced by the reciprocals of
the functions cos, sin, and tan, respectively.
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STEP 2: [Remove Half Angles]
Allowable trigonometric functions of half angles are removed as follows where x
denotes any integer linear combination of constants and the variables A, B, C.

N sinx
an — T
2 1+ cosx
2L 1—cosx
sin” — —_—
2 2
2T, 1+ cosx
cos” — —_—
2 2

STEP 3: [Remove Tangent]
The trigonometric function tan x is replaced by (sin x)/(cos x).

STEP 4: [Remove Sums and Multiples]

The Mathematica function TrigExpand is used to get rid of trigonometric func-
tions of multiple angles and sums of angles using familiar identities such as
sin 20 = 2sinf cos f and sin(z + y) = sinz cosy + cos x sin y.

STEP 5: [Evaluate constants]
Trigonometric functions of a constant are replaced by their numerical values. For
example, sin(7/3) is replaced by v/3/2.

STEP 6: [Convert to a-b-¢ Form]

The basic trigonometric functions are then replaced by expressions involving vari-
ables a, b, ¢, and R using standard formulas such as the Law of Cosines and the
Extended Sine Law by applying substitutions such as the following.

a
inA — —
S1n 2R

b2 + 2 — a?
cosA —» ——M——

2bc

OUTPUT: The output of algorithm T is an equivalent expression that does not
contain any trigonometric functions.

Algorithm R [Convert to R-r-s Form]

This algorithm takes a symmetric homogeneous expression (not involving trigono-
metric functions) and converts it to an equivalent expression involving only the
symbols R, r, and s.

For this paper, we say that an expression f(a,b,c) (not involving trigonometric
functions) is symmetric if interchanging any two members from the set {a,b,c}
does not change the value of the expression. Note that by this definition, ab® +
bc? + ca? is not a symmetric expression.

The expression f(a,b,c) is said to be homogeneous if f(at,bt,ct) = t" f(a,b,c) for
some constant n.

INPUT: Any symmetric homogeneous rational function of expressions involving
the variables and functions listed in Section [4 except that only even powers of m,
w, g, and n are permitted. Trigonometric functions allowed as input to Algorithm
T are also permitted.
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STEP 1: [Remove Trigonometric Functions]
Apply Algorithm T to remove any trigonometric functions.

STEP 2: [Remove Triangle Elements]

Other triangle elements are removed using substitutions such as the following.

K — rs

ha) —» 2

r(a) — Sr_sa
m(a)®> — 3(21)2 +2¢% — a?)

5 4bcs(s — a)

w(a) — W
g<a>2 N (S — a)(as — (b — 0)2)
n(a)? — A(s—b)+b*(s—c)—a(s—b)(s—c)

a
These formulas are obtained by using Stewart’s Theorem [2, p. 152].

STEP 3: [Remove a, b, and |

The expression is now a homogeneous rational function of a, b, ¢, R, r, and s.
Combine all terms giving an expression consisting of a numerator and a denom-
inator. The numerator and denominator are symmetric functions of a, b, and c.
By the Fundamental Theorem of Symmetric Functions [33], these expressions are
converted into expressions involving R, r, and s by using the following transfor-
mations on the elementary symmetric polynomials.

a+b+c— 2s
(6) ab+bc+ca — r* + s+ 4rR
abc — 4rRs

These formulas come from [20, p. 7]. This transformation is performed by the
Mathematica function SymmetricReduction.

OUTPUT: The output of algorithm R is an equivalent expression that contains
only the variables R, r, and s.

Algorithm P [Remove Positive Factors]

This algorithm removes factors from a polynomial expression that are always pos-
itive subject to a given set of constraints. For example, subject to the constraint
x > 0, this algorithm would remove factors like 7z + 5, 22 + 1, and (23 — 2+ 17)8
from an expression because these factors are always positive when = > 0.

INPUT: The input to this algorithm is a polynomial expression, expr, in a set
of variables, vars, and a set of constraints placed on those variables.

STEP 1: [Factor]

Factor expr as a product []fact;” where each fact; is a squarefree polynomial.
This can be done with the Mathematica function FactorSquareFree.
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STEP 2: [Remove positive factors]

Examine each fact;. Use the Mathematica command
Simplify[fact>0,constraints]

to determine if the expression fact; is always positive subject to the given con-
straints. If so, remove the factor fact;’.

OUTPUT The output of algorithm P is a polynomial which is positive if and
only if the original expression was positive.

Technical note. Step 1 of this algorithm requires us to factor a polynomial,
possibly involving multiple variables. Factoring multivariate polynomials is hard.
According to [41], Mathematica factors a multivariate polynomial by substituting
appropriate choices of integers for all but one variable, then factoring the result-
ing univariate polynomials and reconstructing multivariate factors using Wang’s
algorithm [32]. To factor a univariate polynomial, Mathematica uses a variant of
the Cantor-Zassenhaus algorithm [§] to factor modulo a prime, then uses Hensel
lifting and recombination [3§] to build up factors over the integers.

Step 1 doesn’t need to perform a full factorization. Instead, it is simpler to call
the Mathematica function FactorSquareFree to find only factors of the form
polynomial™ where n > 1. The function FactorSquareFree is faster than Factor
because it works by finding a derivative and then iteratively computing GCDs
[41].

Note 2. You might be tempted to improve this algorithm by removing any factors
of the form fact?” under the assumption that such expressions are positive. This
would be incorrect. For example, the inequality (z — 2)8(z* — 7z + 1) > 0 is not
equivalent to the inequality 2% — 7o +1 > 0 because the first inequality is true for
x = 2 while the second one isn’t.

Algorithm F [Remove Fractions from an Inequality]

This algorithm replaces an inequality involving rational functions of x and y with
an equivalent inequality involving only polynomial functions of x and y.

INPUT: The input to this algorithm is an inequality of the form expr > 0 or
expr > 0 where expr is a rational function of variables x and y satisfying the
constraints x > 0 and y > 0.

STEP 1: [Gather Terms]

Gather all the terms together to put the inequality in the form
num
— >0
den —

where num and den are polynomials

STEP 2: [Remove Constants from Denominator]

If den is a positive constant, multiply both sides of the inequality by den. If den
is a negative constant, multiply both sides of the inequality by —den.

STEP 3: [Remove Positive Factors]

Apply Algorithm P with variables x and y using the constraints z > 0 and y > 0
to remove any positive factors occurring in either num or den. This does not
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change the truth value of the inequality because fg > 0 is equivalent to f > 0 if
g > 0.

The inequality is now of the form

num
>0
den

where den is squarefree. Multiply both sides of the inequality by the positive
quantity den?. The inequality is now of the form

flz.y) =0,
where f(x,y) is a polynomial.

OUTPUT: The output of algorithm F' is an inequality that contains only poly-
nomial functions of  and y and is equivalent to the given inequality.

6. THE ALGORITHM

Algorithm B [Prove Triangle Inequality using Blundon’s Method]

Algorithm B (short for Algorithm Blundon) takes a conjectured inequality and
determines if the inequality is true or false.

INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section [l

STEP 1: [Bring larger expression to left]

We change the inequality symbol to be > or > with the following substitutions.
r<y — y=>zwx
r<y — y>ux

For the remainder of the description of this algorithm, we let the symbol > denote
either > or >.

STEP 2: [Collect terms]
We bring all terms to the left side of the inequality using the following substitution.
r>y — z—y=>0

STEP 3: [Convert to R-r-s Form)]

Apply Algorithm R to the left side of the inequality to produce an equivalent
inequality involving only the variables R, r, and s.

STEP 4: [Convert to x-y Form)]

Combine all terms to form a single rational function on the left side of the in-
equality. This expression is now a fraction that contains only the variables R, r,
and s. The numerator and denominator are homogeneous polynomials in R, r,
and s, so only the ratios of R, r, and s are of interest.

To get rid of R, r, and s, we apply the following transformations.
r — =R
s — yR
After simplifying the resulting expression, the inequality will now be of the form
f(z,y)R" = 0.
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Multiply both sides of the inequality by the positive quantity R™" to get
flz,y) =0,

an inequality whose only variables are x and y. The function f is a rational
function. It is not necessarily homogeneous.

STEP 5: [Remove fractions]

Apply Algorithm F to replace the inequality by an equivalent inequality in which
the left side is a polynomial in x and y.

STEP 6: [Check the polynomial inequality f(z,y) > 0]

A triangle inequality, expressed in terms of x and y will be true if and only if
every point in the fundamental region satisfies the given inequality.

Determine if the inequality f(z,y) > 0 is true by using the following Mathematica
commands.

fundamentalFunction=(x"2+y"2) "2+12x"~3-20x*y " 2+48x"2-4y~2+64x;
fundamentalRegion = fundamentalFunction<=0 && x>0 && y>O;
truth = Simplify[f[x,y] >= 0, fundamentalRegion];

If the simplified form of the inequality is True, then the inequality is true. If
the simplified form of the inequality is not True, then the inequality is false. Set
truth to False. Return truth as the result of this algorithm.

OUTPUT: Algorithm B returns true or false indicating the correctness of the
conjectured inequality.

Validity. We wish to stress that Algorithm B is not a heuristic or a technique that
may or may not be useful for proving an inequality. Algorithm B is an effective
procedure that is guaranteed to determine whether an inequality meeting the input
conditions is true or false. Since the algorithm uses exact symbolic computations
(as opposed to numerical computations), if the algorithm proclaims that a given
inequality is true, this represents a (computer-assisted) proof that the inequality
is correct.

Timing. Although the algorithm is guaranteed to work, the running time may
be large depending on the complexity of the given inequality. We tested Algo-
rithm B on 127 inequalities from chapters 1-8 from the “Bottema Bible” [4]. The
algorithm proved all 127 inequalities in 3.7 seconds. This is an average of about
29 milliseconds per inequality. We tested Algorithm B on 11 more complicated
inequalities from [23]. In this case, each inequality was proven true in an average
of about 1.3 seconds. Most inequalities that we have encountered in the literature
could be proven correct by Algorithm B in under a minute. However, there have
been some inequalities where we had to abort the algorithm after 24 hours of
compute time. Nevertheless, we hope researchers will find that Algorithm B will
save them many hours of time trying to prove triangle inequalities by hand.

7. EXAMPLE FOR ALGORITHM B

Let us illustrate the algorithm by working through the steps on the inequality
11V3 PR

5R—|—12r_5+b c
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Step 1 turns this into the equivalent inequality

1 1 1 11v/3
111, uUvs
a b ¢~ bHR+12r

Step 2 turns this into the equivalent inequality

1 1 1 1143
L S L
a b ¢ BHR+12r
For Step 3, we combine all terms to get the equivalent inequality
—11v/3abe + 12abr + 5abR + 12acr + 5acR + 12ber + 5bcR -
abc(12r + 5R) -
Then we do a symmetric reduction, to get the equivalent inequality
—11v/3(abc) + (12r + 5R)(ab + be + ca)
(abc)(12r + 5R)
Now we replace the elementary symmetric functions by their equivalents using r,
R, and s, using equation set @, to get the equivalent inequality
—11V/3(4rRs) 4+ (12r + 5R) (> + s> + 4rR)
(4rRs)(12r + 5R)
Step 4 uses r = xR and s = yR to give the equivalent inequality
—11V3(4zy R3) + (122R + 5R) ((xR)? + (yR)? + 42 R?)
(4dxyR3)(12xR + 5R)
Simplifying the expression on the left gives
—11V/3(4ay) + (122 + 5)(2? + y* + 4x)
(4zxy)(12x + 5)R

Multiply both sides of the inequality by R and simplifying gives the equivalent
inequality

0.

> 0.

> 0.

> 0.

> 0.

1223 + 5322 + 122y% — 44v/3zy + 20z + 5y? -0
(4dzy) (122 + 5) -
In step 5, we note that the numerator does not factor and every factor in the
denominator is positive because z > 0 and y > 0. We therefore multiply both
sides of the inequality by the denominator to get the equivalent inequality

(7) 122° + 5322 + 122y* — 44V 3zy + 20z + 5y° > 0.

For Step 6, we need to determine if every point in the Fundamental Region
satisfies the given inequality. That is, we want to know if the inequality region
contains the Fundamental Region.

Figure 2] (left) shows a portion of the graph of func > 0 in the portion of the
plane bounded by —0.2 < x < 1.2 and —0.2 < y < 3, where func is the left side of
inequality @ The points in the region are yellow. This is the inequality region.
Its boundary is red.

Figure [2| (right) shows the Fundamental Region in green. Its boundary is blue.
Figure |3| shows both regions plotted on the same coordinate plane.

The plots in Figure|3|seem to indicate that every point in the Fundamental Region
(inside the blue curve) lies within the inequality region (yellow). This shows
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FIGURE 2. Inequality Region (yellow) and Fundamental Region (green)
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FIGURE 3. Inequality Region (yellow) and Fundamental Region
(blue boundary)

graphically that the inequality is true. The white region consists of those points
that are not in either region.

However, examining the relationship of the regions by eye is not good enough.
We use the procedure given in Step 6 by issuing the following commands

fundamentalRegion=(x"2+y~2) "2+12x"~3-20xy " 2+48x"2-4y~2+64x<=0
&% x>0 && y>0;

inequality = 12x73+53x72+12x*y~2-443qrt [3] x*xy+20x+5y~2>=0;

Simplify[inequality, fundamentalRegion]

which determines if the inequality inequality is true subject to the constraint
given by the the inequalities comprising fundamentalRegion.

The Mathematica output from the Simplify call is True. This means that the
given inequality is true. The run time of the algorithm was 0.016 sec, compared
to the 4.5 minutes needed if just using the Mathematica Simplify command.

8. THE ¢t-TRANSFORM

Typically, if an inequality is true, then a connected component of the boundary
of the inequality region will contain the fundamental region as shown in Figure [4]
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FI1GURE 4. Inequality Boundary Curve Surrounds Fundamental Region

In this example, the interior of the boundary curve, B, is a portion of the inequality
region. Recall that the inequality region is the region in the z-y plane for which
the inequality holds. If every point in the fundamental region (green) lies inside
the inequality region, then the inequality must be true.

At first glance, it might seem that a simpler way to check if the inequality is true
is to just check if the boundary of the fundamental region (blue) lies inside the
inequality region. This would be simpler than testing if the entire fundamental
region lies inside the inequality region.

Unfortunately, a closer look shows that this reasoning is false. It is possible
that the inequality region is not convex and has a hole inside the fundamental
region. Recall that the boundary of the fundamental region represents the set of
all isosceles triangles.

The following theorem shows that this “simplification” does not work.

Theorem 1. There are homogeneous non-strict inequalities involving polynomial
functions of R, r, and s that are true for all isosceles triangles, but are not true
for all triangles.

Proof. Consider the inequality
400(r? + s%) + 1027R? > 80R(r + 16s).

Algorithm B shows that this inequality is false. A plot of a portion of the inequality
region is shown in Figure 5l The boundary of the inequality region is colored red.
The inequality region consists of all points in the plane outside the red oval. This
region is colored yellow. The fundamental region is outlined in blue. Note that the
inequality region has a hole in it that lies inside the fundamental region. This hole
is colored white. Points inside this hole correspond to triangles that do not satisfy
the inequality. But note that every point on the boundary of the fundamental
region satisfies the inequality. Thus, all isosceles triangles satisfy the inequality,
but not all triangles satisfy the inequality. O

Acknowledgment. I would like to thank Ercole Suppa for finding a simpler
counterexample for use with Theorem [T}



STANLEY RABINOWITZ 43

3.0[

251

201

05

0.0

| . . . I . . . | . . . I
0.0 0.2 0.4 0.6

F1GURE 5. Plot of Inequality Region and Fundamental Region

However, since the boundary of the fundamental region represents all isosceles
triangles, we can prove that an inequality is true for all isosceles triangles if the
boundary of the fundamental region lies inside the inequality region.

Using the parametric representation for the boundary of the fundamental region
given in Section [3] leads to the following algorithm.

Algorithm S [Prove inequality holds for all isosceles triangles]

Algorithm S takes a conjectured inequality and determines whether or not the in-
equality holds for all isosceles triangles. It typically runs faster than Algorithm B.

INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section [l

STEPS S1-S5: [Start with Algorithm B]

Perform steps 1-5 of Algorithm B. The inequality is now of the form f(z,y) > 0,
where f is a polynomial and where x = r/R and y = s/R.

STEP S6: [Convert to t-form]

We saw in Figure [1| that the boundary of the fundamental region is a portion of
a hypocycloid and a portion of the y-axis. Points on the y-axis correspond to
degenerate triangles, so it suffices to check that all the points on the hypocycloid
portion satisfy the given inequality.

Use equation set to express the boundary of the fundamental region as a
function of ¢ with ¢ > 1. Make the following substitutions.
4(t* — 1)
(t2 + 1)2
8t?
(t2+1)2
The given inequality is now equivalent to an inequality of the form g(¢t) > 0
subject to the constraint ¢ > 1.

Y



44 COMPUTER ALGORITHM FOR PROVING SYMMETRIC HOMOGENEOUS TRIANGLE INEQUALITIES

STEP S7: [Combine terms|

Combine all terms over a common denominator. The common denominator will
be of the form (£ + 1)® where n is a positive integer. Since this expression is
always positive, remove the denominator.

STEP S8: [Remove positive factors]

The inequality is now of the form g¢(t) > 0, where g is a polynomial. Apply
Algorithm P with variable ¢ using the constraint ¢ > 1 to remove any positive
factors occurring in g.

STEP S9: [Check the polynomial inequality g(t) > 0]

To see if the inequality g(t) > 0 is true, issue the following Mathematica command:
truth = Simplify[g[t] >= 0, t>1]

If the simplified form of the inequality is True, then the inequality is true. If
the simplified form of the inequality is not True, then the inequality is false. Set
truth to False. Return truth as the result of this algorithm.

OUTPUT: Algorithm S returns true or false indicating whether or not the in-
equality holds for all isosceles triangles.

9. EXAMPLE FOR ALGORITHM S

Sometime you might have a large number of inequalities that you want to check.
Since algorithm S runs faster than algorithm B, you could first test the inequalities
with algorithm S. This would rule out any that failed for some isosceles triangle.
Then apply algorithm B to the remaining inequalities.

For example, let D(i, j) denote the distance from Kimberling center X; to center
X;. Kimberling [I7, p. 248] asks for which 4, j, and & all between 1 and 12
satisfy D(k,i) < D(k,j). This is a large number of possible inequalities. Using
Algorithm S narrows it down some. Checking the others ones, we find many true
inequalities.

We will use one of them, D(1,7) < D(1,3) to illustrate Algorithm S. This in-
equality represents the geometric fact that the circumcenter of a triangle is never
closer to the incenter than the Gergonne point is.

The barycentric coordinates for these points can be found in [I8]. We have the
following.

Xi=(a:b:c)
X5 = (a®(a® =" =) (b = b° — a®) : (¢ — a® = b?))
X;=(la+b—c)a=b+c): (a+b—c)(—a+b+c): (a—b+c)(—a+b+c))
The formula for the square of the distance between two points given in barycentric
coordinates can be found in [15, equation 9]. Using that formula, we can set up
the inequality

D(1,7)* < D(1,3)?
which is a polynomial inequality equivalent to D(1,7) < D(1,3). Applying Algo-
rithm S, we find that at the start of Step S6, the z-y inequality is

zt + 1023 — 322y + 312 4+ 242 — 16 > 0.
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Applying Step S6, we find that the equivalent t-inequality is

256 (2 — 1)* | 640 (2 —1)° | 496 (12 —1)° 96 (12 —1) 38483 (12 — 1)
@+ @+t @yt (@) (@2 4)

—16 > 0.

Combining terms and discarding the denominator, per Step S7, gives
164 (12 — 3) (5 + 81° + 6t* + 561> — 7) > 0.

Step S8 removes all positive terms using Algorithm P, with the condition that
t > 1. This leaves the equivalent t-inequality

(t* —3)* > 0.

Note that Algorithm P determined that %+ 8t° + 6¢* + 56¢> — 7 is always positive
when ¢ > 1.

Step S9 determined that (¢2—3)? > 0 is always true when ¢ > 1. Thus D(1,7)? <
D(1,3)? for all isosceles triangles. This concludes the example for Algorithm S.

We can then apply the slower Algorithm B to D(1,7)* < D(1,3)?. Algorithm B
determines that this inequality is true for all triangles. The details are omitted.

Algorithm S is useful in other cases as well. There are a number of articles in
the literature that give conditions that show when an inequality can be proven
for all triangles if it can be proven for all isosceles triangles. See for example [26]
and [27]. Also, if you can prove that the inequality region is convex, then the
inequality will be true for all triangles if it is true for all isosceles triangles.

10. FINDING A COUNTEREXAMPLE

If Algorithm B declares that an inequality is false, the following procedure can be
used to exhibit a counterexample.

Algorithm C [Find Counterexample to Inequality]

INPUT: A false inequality involving symmetric homogeneous rational functions
of variables and functions listed in Section [l

STEP 1: Suppose that when using Algorithm K, Step 6 found that the inequality
is equivalent to f(z,y) > 0. Use the following Mathematica commands to find
values for x and y that make the inequality false.

fundamentalRegion = fundamentalFunction<=0 && x>0 && y>O;
FindInstance[! (f[x,y] >= 0) && fundamentalRegion, {x,yl}]

STEP 2: Use the relationships
< r=zR
(8) {3 =yR

to find the values of r, R, and s that make the inequality false. Only their ratios
are important, so any convenient value for R can be chosen. This gives you the
counterexample in terms of r, R, and s.
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STEP 3: If you want to express the counterexample in terms of a, b, and ¢, use
the fact that a, b, and c are the roots of the equation

9) 2* — (28)2® + (r* + s* + 4rR)x — (47Rs) = 0.
This fact follows from Vieta’s Formulas [37] and equation set ().

OUTPUT: Algorithm C gives the values of r, R, and s for which the inequality
is false. It also gives the values of a, b, and ¢ that exhibit a counterexample to
the proposed inequality.

If you used Algorithm S to prove an inequality false, you can use the following
procedure to exhibit a counterexample.

Algorithm C* [Find Isosceles Triangle Counterexample to an Inequality]

INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section[d] that is not true for all isosceles triangles.

STEP 1: Suppose that when using Algorithm S, Step S9 found the inequality
to be equivalent to g(¢) > 0. Use the following Mathematica command to find a
value for ¢t that makes the inequality false.

FindInstance[!(g[t]>=0) && t>1, t]

STEP 2: Use that value of ¢ to find the corresponding values of x and y.
4(t* —1)
e
8t?
G

(10)

STEP 3: Use these values of x and y to find », R, and s. Without loss of
generality, assume that R = (t* + 1)?. Then the following equations give R, r,
and s.

R=(t*+1)?
(11) r=4(t* - 1)
s =8¢t

STEP 4: As before, equation @ can then be used to express the counterexample
in terms of a, b, and c.

OUTPUT: Algorithm C* gives the values of r, R, and s for which the inequality
is false. It also gives the values of a, b, and ¢ that exhibit a counterexample to
the proposed inequality.

Example 1.
Suppose we want to find a counterexample to the proposed inequality
s2 <r?44rR+ 4R
We apply Algorithm S. The R-r-s form is
2+ 4rR+4R? — §* > 0.
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The z-y form is
x? —y2+4x+420.
The t form is
th —6t2 +1 > 0.

Polynomial inequalities with one variable are well-understood. The following plot
shows that t* — 6t2 + 1 can be negative when ¢t > 1.

ait)

150

100

FIGURE 6. Plot of g(t) = t* — 6t + 1

But to use the method described above, we use the Mathematica command
FindInstance[t~4-6t"2+1<0 && t>1, t]

which returns t = 2 as a counterexample. Equation set then give x = 12/25
and y = 64/25. Equation set then give R = 25, r = 12, and s = 64 as our
counterexample.

If we want to present the counterexample in terms of a, b, and ¢, we issue the
commands

equationForabc = x7"3-2s*x"2+(r"2+s"2+4R*r)x—4R*r*s == 0;
Solve[equationForabc/.{R->25, r->12, s->64}, x]

which tells us that a, b, and ¢ are 40, 40, and 48. Scaling down, we can say that
the isosceles triangle with sides 5, 5, and 6 is a counterexample.

Example 2.

Now let us work through an example where Algorithm B is used.

Suppose we want to find a counterexample to the proposed inequality
26 1 1 1
<

SR+12r ~a b ¢
We apply Algorithm B. The R-r-s form is

1273 4+ 53r2R + 20r R? — 104rRs + 12rs? + 5Rs? >0
4872 Rs + 20rR2s -

The x-y Form is

1223 4 5322 + 122y% — 1042y + 202 + 5y
4 (1222 4 5x) y

> 0.
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After clearing of fractions (Step 5), we find that the inequality is equivalent to
1223 + 5322 + 122y* — 104zy + 20z + 5y* > 0.

We use the Mathematica command

FindInstance[12 x"3+53 x"2+12 x y~2-104 x y+20 x+5 y~2<0
&& x>0 && y>0 &% fundamentalFunction <= 0, {x,y}]

which returns the instance = 1/8 and y = 13/8. Without loss of generality, let
R =8,s0that R=38,r =1, and s = 13 is our counterexample. The equation for
a, b, and ¢ becomes

z® — 2627 + 2022 — 416 = 0,

so the values for a, b, and ¢ that give a counterexample are the roots of this
equation. These are a ~ 3.24686, b ~ 10.2352, and ¢ ~ 12.5179.

11. FINDING BEST INEQUALITIES WITH ONE PARAMETER

Suppose we want to find a triangle inequality involving some undetermined con-
stant k£, and we want to find the best value for k. For example, suppose we want
to find an inequality of the form

s < 2R+ kr

where k is some constant. Suppose further that we want the “best” value for £
that makes this inequality true (i.e., in this case, we want the smallest possible
value for k).

If {f; > 0} is a set of inequalities, we say that f € {f;} is the best inequality
of the set if f > f; for all . If {f(k) > 0} is a set of inequalities involving a
parameter k, we say that kg is the best constant k if f(ko) > f(k) for all k or if
f(ko) < f(k) for all k. See [20] p. 43].

Algorithm K [Find Best Constant ]
Find the best value for k for a given inequality containing the parameter k.

INPUT: We are given an inequality f(k) > 0 involving a real parameter k and
symmetric homogeneous rational functions of variables and functions listed in
Section [l

STEP 1: Apply Algorithm B, but stop at step 5, when we are about to check if
f(z,y) > 0. In this case, the inequality is actually of the form f(x,y, k) > 0.

STEP 2: Use the following Mathematica commands to determine the set of
values for k that make the inequality true, where expr= f(x,y, k).

fundamentalFunction=(x"2+y"2) "2+12x~3-20x*y " 2+48x~2-4y~2+64x;
fundamentalRegion=fundamentalFunction <= 0 && x>=0 && y>=0;
Resolve[ForAll[{x, y}, fundamentalRegion, expr >= 0]]

Resolve eliminates V and 3 quantifiers from an expression. According to [39],
Resolve [expr] can in principle always eliminate quantifiers if expr contains only
polynomial equations and inequalities over the reals.

OUTPUT: The conditions that £ must satisfy to make the given inequality true.
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Example 1.
Let us apply Algorithm K to the inequality s < 2R + kr.

In this case, Algorithm K returns 4 + k > 3V/3. Thus, the smallest value for k is
3v/3 — 4. This agrees with the value given in [20, p. 47].

We could also check that this value is plausible by using Algorithm B. Algorithm
B reports that the inequality s < 2R 4 (3v/3 — 4)r is true but the inequality
s < 2R+ (3v/3 — 4 —1/1000)r is false.

Example 2.

For a more complicated example, we look at the inequality
11v/3 1 1 1
5R+12r+\/k_(2r—R) =utrte
considered by Wu in [42]. In this case, the z-y form is
(2kx — k+ 122 + 5) %
(2ka® + Tka® + 2kay® — 4kx — ky* + 122° + 532° + 122y* — 44V 3zy + 20z + 5y%)

and Algorithm K returns the fact that £ must be less than or equal to the root of
the equation

4052° + 6705z + 1295862° + 10509762 + 2795373z — 62181 = 0
that is approximately 0.0220608. This agrees with the result found by Wu.

Example 3.

In this example, the variable k£ occurs more than once in the inequality.

Chirciu [I1] found the inequality

(50) (S2) B ol et

To find the best value for k we apply Algorithm K which returns the fact that

< 175 4+ 16v94
- 81 '

k
This gives a stronger inequality.

Theorem 2. The following inequality holds for all triangles.
1 2kr a-+b 175 + 16v94
il -0 > f < "
(g m)(E Ta)+R_(k+9)|| 5 or k < <1

Example 4.

In this example, we use Algorithm K to solve an open problem stated by Kimber-
ling in [I7, p. 255]. The problem is to find

o { 33}

where D[i, j| denotes the distance between triangle centers X; and X; and the
supremum is taken over all triangles.

We apply Algorithm K to the inequality D[6,7]* < k*D[1,3]%. The squares are
used to avoid radicals. Algorithm K reports that the smallest positive value for £
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(after simplifying) is 3(2 — v/3). This agrees with Kimberling’s estimate that the
answer is about 0.3572.

12. FINDING CONDITIONS FOR EQUALITY

If an inequality is true, we can find the conditions for which equality holds using
the following algorithm.

Algorithm Q) [Find Conditions for Equality]

Algorithm Q determines all triangles for which a given inequality becomes an
equality.

INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section [l

STEP 1: Apply Algorithm B, but stop at step 5 when we are about to check if
flz,y) = 0.

STEP 2: Change the inequality symbol to an equality symbol.

STEP 3: [Check the polynomial equality f(x,y) = 0]

Use Mathematica to solve the equation using the commands

Solve[f[x,y]==0 && fundamentalRegion,{x,y},PositiveReals]

which finds all (x,y) in the fundamental region for which the equality is true.

STEP 4: [Find R, r, and s]

A triangle satisfying the equality is unique only up to a scale factor, so we can
pick any value we want for R. For simplicity, pick R = 1.

For each (z,y) found in Step 3, find the corresponding values for R, r, and s using
equation set ().

R=1
r=x
s=1

Each triple (R, 7, s) so found represents a triangle for which equality holds in the
given inequality.
STEP 5: (optional) [Find a, b, and (]

If you want to describe the triangle in terms of its sides rather than in terms of
R, r, and s, proceed as follows. The values of a, b, and ¢ are the roots of the
equation

2® —2s2® + (1 + s> + 4rR)x — 4rRs =0
as we saw in Algorithm C.

OUTPUT: The set of triangles for which the given inequality becomes an equal-
ity.
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Example 1: Let us use Algorithm(Q to find the conditions for equality in the
inequality
IV 111

S5R+12r —a b ¢

Step 1 gives
20z + 5322 + 122° — 44xyV/3 + 5y% + 122y > 0.

Step 2 changes this to an equality.
Step 3 solves for z and y and gets (z,y) = (%, %) as the only real solution pair
in the fundamental region.
Step 4 gives R=1,r = %, and s = %3
Step 5 solves the equation z° — 3v/32% + 92 — 3v/3 = 0 and finds that the three
roots are all v/3. Thus, equality only holds for an equilateral triangle.
We already saw in Figure [3| what the regions look like. The boundary of the
inequality regions touched the boundary of the fundamental region at the two
points, (0,0). and (%, %) The point (z,y) = (0,0) represents a degenerate
triangle and (1/2,3+/3/2) represents an equilateral triangle.

Example 2:

Many inequalities have the property that equality holds if and only if the triangle
is equilateral. We now give an example of an inequality where this is not the case.
Let us see how Algorithm Q works with the inequality

27‘2+<3—4\/§>TR—|—<10+\/§) R? — <5+3\/§> Rs +2s* > 0.

The xy-Form is
212 4 (3—4\/§)x+2y2— (5+3\/§)y+\/§+1020.

After changing this to an equality and solving for
(x,y), we find that the only solution pair in the
fundamental region is (z,7) = (V2 —1,v/2+1).
This gives rise to R = 1, r = v/2 — 1, and
s =2+ 1. Converting to abc-Form, we find 1 ]
{a,b,c} = {2,4/2,v/2}. Scaling, we sece that the 207 |
only triangle for which equality holds is a trian- — ]
gle similar to one with sides of lengths 1, 1, and I |
V2. That is, equality occurs if and only if the 151 ]
triangle is an isosceles right triangle. I |

25 bl

In the figure to the right, the blue curve is the I |
boundary of the fundamental region. The in- 101 ]
equality region is yellow and is the region out- I |
side the circle with the red circumference. The
boundaries of the two regions are tangent at the 05l |
point (z,y) = (V2 — 1,42 + 1), which is the [ |
point corresponding to isosceles right triangles.
The inequality is true because every point in the
fundamental region lies in the yellow region. The
only time equality holds is at the point where the )
two boundaries are tangent.

0.0 B
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Note. The graphical view of an inequality shows that it is possible to have an
inequality in which equality holds for two (or more) shapes of triangles. Just
create two (or more) regions externally tangent to the hypocycloid bounding the
fundamental region and form the inequality corresponding to the exterior of these
regions.

Example 3:

Often, the shape of a triangle for which equality holds has sides whose lengths are
very complicated. Mathematica has no problem with expressions involving roots
of polynomials.

Let us consider the following Bonnesen-like inequality, which comes from [23]. In
this inequality, L = 2s is the perimeter of the triangle.

L? —12V3K > kr(R — 2r)

First we use Algorithm K to find the largest value of k for which this inequality
is true. Algorithm K tells us that the best value for k is the root of the equation

2? — 28027 + 103687 — 62208 = 0
that is closest to 35. Let us call this root ky. Algorithm B confirms that the

inequality
L? — 12V2K > kor(R — 2r)
is true. We will now use Algorithm Q to determine when equality holds.
The xy-Form (changed to an equality) is
4y — 12V3zy — kox(1 — 22) = 0.

The output from the Solve call in Step 3 finds two pairs (z,y) that satisfy the
equality and lie in the fundamental region.

- (239)

This corresponds to the set of equilateral triangles.

The first solution is

The second solution is
(z,y) = ($2,y2)

where x5 and y, are given as root expressions. Setting R = 1, r = x5, and s = s,
we then find that a, b, and ¢ are the roots of the equation

2+ +cx =0

where ¢y, ¢1, and ¢y are also given as root expressions. Finally, Mathematica solves
this cubic and gives

(a,b,c) = (1,1, )
where X is the largest real root of the equation 312® — 282% — 162 + 4 = 0.
We can also use Algorithm S instead of Algorithm K.

Algorithm Q¥ [Find Isosceles Conditions for Equality]

Algorithm Q* determines all isosceles triangles for which a given inequality be-
comes an equality.
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INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section ll

STEP 1: Apply Algorithm S, but stop at step S9 when we are about to check if
g(t) = 0.

STEP 2: Change the inequality symbol to an equality symbol.
STEP 3: [Check the polynomial equality g(¢) = 0]

Use Mathematica to solve the equation using the commands
Solve[g(t)==0 && t>1,t,PositiveReals]

STEPS 4 and 5: Continue using steps 4 and 5 from Algorithm Q.

OUTPUT: The set of isosceles triangles for which the given inequality becomes
an equality.

Example 3*:

We repeat Example 3, but use Algorithm Q* instead of Algorithm Q.

In this case, the t-Form (with a constant factor removed and the inequality symbol
replaced by an equality symbol) is

(ko — 64)t° 4 96v/3t> — Thot* — 96V/3t> + 15kot> — 9k = 0.

Step 3 finds all ¢ in the boundary of the fundamental region for which this equality
is true.

Solving for ¢, Mathematica finds two real solutions for ¢ larger than 1. One of them,
after simplifying (using RootReduce) is t = /3, which we have seen corresponds
to the set of equilateral triangles. The other solution is the largest real root of
the equation

27t% — 163t* 4+ 225t2 — 81 = 0.

Call this value ty. Converting to abc-Form shows that
{a,b,c} = {8to(t; — 1), 4to(ty + 1), 4to(ts + 1)}.

Scaling this shows that the triangle is similar to the triangle with sides 1, 1, and
2(t2 — 1)/(t2 + 1). Simplifying again (using RootReduce) lets us say that the
inequality holds for any triangle similar to the isosceles triangle with sides 1, 1,
and )\, where ) is the largest real root of the equation 3123 — 2822 — 162 +4 = 0.

Example 4:

We go back to Example 4 in the previous section and use Algorithm Q to find the
conditions for equality. We get the following theorem.

Theorem 3. For any nonequilateral triangle,
4
DI6, 7] < (2= V3)D[1,3]

where Dli, j] denotes the distance between triangle centers X; and X;. Equality
holds when and only when the triangle s similar to the triangle with sides 1, 1,

and 4 — 2+/3.
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13. MISTAKES IN THE LITERATURE

The literature on triangle inequalities and identities is so vast that it is inevitable
that some mistakes could get published. While testing Algorithm B, we ran across
a number of errors in the literature. We list below the errors found.

e The inequality 27 [](b* 4+ ¢* — a?)? < (4K)% appears in Bottema [4, p. 47]. This
is incorrect as noted in [35]. The correct result is the following.

Theorem 4 (Ono’s Inequality). For any acute triangle,

27 [J®* + ¢ < (4K)S.

e The inequality 4R(R — 4K /s)? > (s*/4 +4K?/s*> — 2R? — 5K R/s)? appears in
Bottema [4, p. 71]. This is incorrect. A counterexample is r = 1, s = 24, R = 16.
The correct inequality is given in [20, p. 3-4].

Theorem 5 (Nakajima’s Inequality). For any triangle,

2 2
4R(R—%) >( +£—2R2 1OKR)
S S

e The inequality »  ——— @ +C a) > R (5 — 4}glr) appears in Crux Mathematicorum

[T9, p. 101]. This inequality is dimensionally incorrect and hence false. The correct
inequality is the following.

Theorem 6. For any triangle,

1 1 9r
> - ()
a(b+c—a) 87’R( 4R+r)

e The inequality (a® + b* + ¢*)/(ab + be + ca) > 2R/(R + 2r) appears in the
Romanian Mathematical Magazine [22]. This is incorrect. The correct inequality
is the following.

Theorem 7. For any triangle,
6 R _ a+ 0%+ . 2R
5R+2r —ab+bc+ca — R+2r

e The inequality a® + b? + ¢ < 8R?* + 8 K?/(27R?) for all acute triangles appears
in Mitrinovic |20, p. 243]. This is incorrect. The following are correct inequalities.

Theorem 8. For any acute triangle,

16K*
2124 2 < §R2 _
a”+b"+c” <8R + T2
Theorem 9. For any acute triangle,
17 S8K*2
b? 2 .
a’ + b+ ¢ R 27R2

e The inequality > m? < 6R* + V3K /6 for all acute triangles appears in Mitri-
novic [20, p. 247]. This is incorrect. The correct inequality is the following.

Theorem 10. For any acute triangle,

> mi < 6R’+ V3K/3.
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e The inequality []a* > 4Rr(2R? + 8Rr + 3r?) for all acute triangles appears in
Mitrinovic [20], p. 248]. This is incorrect. The correct inequality is the following.
Theorem 11. For any acute triangle,
[[¢* = 4R**(2R* + 8Rr + 3r).
Ercole Suppa [30] has pointed out a number of errors in Alasia [1]. We used

Algorithm R to correct these identities.

e Alasia [1, Formula 106] claims that > a/(rr,) = 2(2R+r,)/K. This is incorrect.
A correct identity is the following.

Theorem 12. For any triangle,

21_2(4]%—#7“)
e K

e Alasia [I, Formula 131] claims that > r, = 3R + 1) cos A. This is incorrect.
The correct identity is the following.

Theorem 13. For any triangle,

Zra = 3R—|—RZCOSA.

e Alasia [I, Formula 406] claims that > sin A/ [[sin A = R/r. This is incorrect.
The correct identity is the following.
Theorem 14. For any triangle,

> sinA 2R

[[sinA  r°

e Alasia [1, Formula 421] claims that 2]]sin A = 3" sin® A. This is incorrect. A
correct identity is the following.

Theorem 15. For any triangle,

4HsinA = Zsin2A.

e Alasia [I, Formula 427] claims that ) cos2A = 4sin Asin Bcos C' — 1. This is
incorrect. A correct identity is the following.

Theorem 16. For any triangle,

ZsinQA :4HsinA.

e Alasia [I, Formula 434] claims that ) (tan A/tan B + tan B/tan A) + 2 =
> sin A. This is incorrect. A correct identity is the following.

Theorem 17. For any triangle,
tanA tan B 4
> ‘ S
tan B tan A 1+ > cos2A

14. PROVING IDENTITIES

Since the quantities R, r, and s are independent, two symmetric homogeneous
expressions involving elements of a triangle will be identical if and only if their
R-r-s forms are identical. We can formalize this as Algorithm V.
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Algorithm V [Verifying Identities]

INPUT: Input to this algorithm is a conjectured identity involving symmetric
homogeneous rational functions of elements of a triangle.

Step 1 [Convert to R-r-s Form]
Apply Algorithm R to both sides of the conjectured identity.

Step 2 [Compare Sides]

If the two results are identical, return True, else return False.

OUTPUT: Algorithm V returns true or false indicating the correctness of the
conjectured identity.

Example

Theorem 18 (Suppa’s Exradii Identity [29]). In any triangle, the following iden-
tity holds.

(12) Zab: Zra(rb—l—r)

Proof. Applying Algorithm R, the left side of is equivalent to 72 + 4rR + s°.
The right side of (12)) is also equivalent to 7* + 4rR + s?. Thus, is an
identity. O

15. PROVING INEQUALITIES FOR SPECIAL TRIANGLES

The following theorem is well known [4], p. 102].

Theorem 19.

(a) A triangle is acute if and only if s > 2R + .

(b) A triangle is obtuse if and only if s < 2R +r.

(c) A triangle is a right triangle if and only if s = 2R +r.

This allows us to find inequalities restricted to these classes of triangles.

For example, in Algorithm B, instead of using the code

fundamentalFunction=(x"2+y~2) "2+12x"3-20x*y~2+48x"2-4y~2+64x;
fundamentalRegion=fundamentalFunction<=0 && x>0 && y>O0;
truth = Simplify[f[x,y] >= 0, fundamentalRegion];

we can use the following code instead to prove inequalities that are true just for
acute triangles.

fundamentalFunction=(x"2+y"2) "2+12x"~3-20x*y ~2+48x"2-4y " 2+64x;
fundamentalRegion=fundamentalFunction<=0 && x>0 && y>O;
acuteRegion = y>x+2;

truth = Simplify[f[x,y]>=0, fundamentalRegion && acuteRegion]

Note that the R-1-s condition s > 2R + r becomes the x-y condition y > x + 2 by
applying the substitutions r — xR and s — yR, since R # 0.

If we plot the line y = = + 2 (in red) on the same set of axes as the fundamental
region, we get the following graph:

The portion of the fundamental region (green) above the red line corresponds to
acute triangles. The portion below the red line corresponds to obtuse triangles.
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FiGure 7. Split of Fundamental Region into Acute and Obtuse Regions

An inequality will be true for all acute triangles if the inequality region covers the
portion of the green region above the red line (the acute region).

If using the t-Form, the ¢ condition corresponding to y > x+2is 4¢3 +1 > t4+4¢2.
Since t > 1, this is equivalent to t> < 2t +1or 1 <t < 1+ /2.

Example 1.

Let us work through proving that the inequality

Z tan A > 3v3
is true for all acute triangles using this method.
Applying Algorithm B, we find that the R-r-s Form is

—3v3r2 — 2r (6\/§R + s) +3v3 (s? — 4R?)
r2 4+ 4rR +4R? — 52

> 0.

The x-y polynomial (from Step 5) is
(22 + 4z — o + 4) (—3\/5.7;2 — 2y — 12V3 + 3v/3y? — 12\/5) .

For step 5, we issue the following code:

fundamentalFunction=(x"2+y~2) "2+12x"3-20x*y~2+48x"2-4y~2+64x ;

fundamentalRegion=fundamentalFunction<=0 && x>0 && y>O0;

acuteRegion = y>x+2;

inequalityRegion = (4+4x+x~2-y~2) (-12Sqrt[3]-12*Sqrt[3]x
-38qrt [3]x~2-2x*y+3Sqrt [3]y~2) >= 0;

Simplify[inequalityRegion, fundamentalRegion && acuteRegion]

The result of the Simplify command is True, which proves the inequality.
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Incidentally, if we apply Algorithm Q, we find that amongst all acute triangles,
equality occurs if and only if (z,y) = <%%§> That is, equality occurs if and
only if the triangle is equilateral.

Had we not known what the best constant was for the right side of the inequality,
we could have applied Algorithm K to the inequality

ZtanA > k.

Step 2 of Algorithm K would be modified by changing fundamentalRegion to
fundamentalRegion && acuteRegion in order to restrict it to acute triangles.
The output from Algorithm K is then 3+/3, telling us that this is the best possible
constant.

Other shape triangles.

We can prove inequalities for other shape triangles by replacing the fundamental
region by the region formed by intersecting the fundamental region and the region
corresponding to the shape of triangle we are interested in.

Example 2.

We know that for all triangles, R > 2r, and “2” is the best possible constant. We
can ask what is the best constant k£ such that R > kr for all obtuse triangles.

Using the inequality for the obtuse region, s < 2R + r, we get the following.

Theorem 20. For all obtuse triangles, R > (1 ++/2)r.

This agrees with Emmerich’s Inequality given in [20] p. 251].

Example 3.

Suppose we want the best constant k such that R > kr for all triangles that have
the property that one side is twice another side. The abc-condition is

(13) (@ —2b)(b—2a)(c —2a)(a — 2¢)(c — 2b)(b—2¢) = 0.

Given a condition on a, b, and ¢, the R-r-s condition is found by applying Algo-
rithm R. The xy-condition is then found using equation set and canceling R
factors.

In this case, applying Algorithm R to the left side of Equation (13)), we get

9r°+108r°R + r* (432R* 4 195°) + 4r° (144R* — 53Rs?)

14
14 +11r° (20R?s* + %) — 32rRs* + s° = 0.

Applying Algorithm K restricted to the region 472 — 16rR + s?> = 0 gives the
following theorem.

Theorem 21. For all triangles in which one side is twice another side, R > kqor
where ko ~ 2.6468675 is the positive real root of

162 — 4822 + 21z — 16 = 0.



STANLEY RABINOWITZ 59

16. PROVING TRIVARIATE INEQUALITIES

Algorithm B can be used to prove symmetric homogeneous trivariate inequalities
involving rational functions of x, y, and z subject to the constraints x > 0, y > 0,
and z > 0 by using the following algorithm.

We use the following theorem [5, Section 2] which expresses the correspondence
between positive inequalities and triangle inequalities.

Theorem 22 (The Fundamental Correspondence). Let a, b, ¢ be the sides of
a triangle. Then the inequality f(a,b,c) > 0 is equivalent to the inequality
g(x,y,z) = f(y—;rz, =z xTer) >0 for all x,y,z > 0 where

r = b+c—a,

y = c+a-—b,

z = a+b—c

Variables a, b, and ¢ can be expressed in terms of x, y, and z via the equations

0 = Y+ z
= 5
zZ+x

h =
2 b
r+y

C g

2

Algorithm XYZ [Prove Trivariate Inequality]

INPUT: Input to this algorithm is an inequality involving symmetric homoge-
neous rational functions of x, y, and z subject to the constraints z,y, z > 0.

Step 1 [Convert to a, b, ¢] Make the following substitutions.
xr — b+c—a,
y — c+a-—b,
z = a+b—ec
Step 2 [Apply Algorithm B] By Theorem 22} the resulting inequality is equivalent

to the given one with the constraints a > 0,6 >0,¢>0,a+b>c¢, b+ ¢ > a,
c+a>b.

So apply Algorithm B to determine whether the inequality is true or false.

OUTPUT: Algorithm XYZ returns true or false indicating the correctness of the
conjectured identity.

Application.

We can combine Algorithm K with Algorithm XYZ to find the best k& that makes
the following inequality true for all x,y, z > 0.

5 5 5 1 1 1 2 2 2 1 1 1
(15) M_<_+_+_) Zk<m_<_+_+_>)

(xyz)? Ty oz TYZz r Yy oz
We get the following result.
Theorem 23. Inequality 1s true for all x,y,z > 0, whenever

k<1<8+§/% (997—69\/@>+§/% (997+69\/@)).

-3
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