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Abstract. A cevian of a triangle is a line segment that extends from a vertex
of the triangle to a point on the opposite side. A cevian that passes through a
triangle center is called a central cevian. There are a number of inequalities known
concerning central cevians. For example, if m,, m;, and m, are the lengths of the
medians of a triangle, then it is known that
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where 7 is the inradius of the triangle and R is its circumradius. We use a computer
to discover and prove similar inequalities for other central cevians. For example,
if f,, fp, and f. are the lengths of the Feuerbach cevians of a triangle, then
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were s is the semiperimeter of the triangle.

27r* < m2 +mi +m? < —R?
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1. INTRODUCTION

There are many notable points associated with a triangle, such as the incenter,
centroid, circumcenter, and orthocenter, These are special cases of triangle centers
as defined by Clark Kimberling in [3]. A cevian of a triangle is a line segment that
extends from a vertex of the triangle to a point on the opposite side. A cevian
that passes through a triangle center is called a central cevian. The cevian from
vertex A is called the A-cevian. The other cevians are named similarly.

Let X,, denote the nth named triangle center as cataloged in the Encyclopedia of
Triangle Centers [4]. Let |PQ)| denote the length of the line segment PQ.

The cevians through X,, will be named AA,,, BB,,, and CC,, as shown in Figure[l]

IThis article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2 INEQUALITIES INVOLVING CENTRAL CEVIANS

F1GURE 1. Cevians through X,

2. THE DATA

We use barycentric coordinates in this study. The barycentric coordinates for
triangle centers X; through X, in terms of the sides of the triangle, a, b, and
¢, are shown in Table Only the first barycentric coordinate is given, because
if f(a,b,c) is the first barycentric coordinate for a point P, then the barycentric
coordinates for P are

<f(a, b,c): f(b,c,a): f(e a, b))

These were derived from [4].

TABLE 1. Barycentric coordinates for the first 12 centers

n | First barycentric coordinate for X,
1 |a

2 |1

3 | a*(a® —b* — )

4 | (@*+0*—A)(a* = b+ )

5 [t —a?b? + bt — a’c® — 2%
6 |a®

7 |[(a+b—c)la—b+c)

8 |la—b—c

9 |ala—b—rc)

101b+c

10— (—a+b+c)

12/ (a+b—c)la—b+c)(b+c)?

We will find inequalities that involve the squares of the lengths of central cevians
and other elements of a triangle, as listed in Table [2]

TABLE 2. Elements of a triangle

symbol | Description

a,b,c the sides of the triangle

the area of the triangle

the inradius of the triangle

the circumradius of the triangle
the semiperimeter of the triangle

SRS Y
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To find the distance between two points, we used the following formula which
comes from [2].

Proposition 1 (Distance Formula). Given two points P = (uy,vi,w;) and Q =
(ug, v, ws) in normalized barycentric coordinates. Denote © = uy —ug, Y = V1 — Vg
and z = wy — wy. Then the distance between P and @) is

V—atyz — bz — c2ay.

To find the length of a cevian of a triangle, we proceed as follows. Set up a
barycentric coordinate system with AABC" as the reference triangle, so that A =
(1:0:0,B=(0:1:0),andC = (0:0:1). Let P be an arbitrary point
in the plane other than A. Let the barycentric coordinates for P be (p : ¢ : 7).
Let AP meet BC at A’ (Figure [2). Then it is straightforward to show that the
barycentric coordinates for A" are (0: ¢ : 7).

A(1:0:0)

B(0:1:0) A(0:q:r) C0:0:1)

FiGURE 2. Barycentric Coordinates

Using Proposition [1, we get the following result.

Proposition 2 (Cevian Length). Let P be a point in the plane of AABC with
trilinear coordinates (p : q :r). Let AP meet BC at A'. Then

\/bQT(q + 7))+ A2q(qg+r) — a®qr
qg+r '

A4 =

Using Proposition [2] and Table [I} we can find the length of the A-cevian that
passes through the point X,,. Table |3[ shows the lengths for n ranging from 1 to
12, where K = /s(s —a)(s — b)(s —c¢) and s = (a + b+ ¢)/2.
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TABLE 3. Cevian lengths for the first 12 centers

n | Square of length of A-cevian passing through X,
a2

1 jbc|ll——+—=

C( (b+ c>2)

1
2 1 (2 (b2 +c2) — a2)

a’b*c? (a4 —2a (b + &) + (b — 02)2>
3 |-
(v — )? — a2 (b2 + 02))2

4K*?
4 e
. 16K2 (a® — 3a*V® — 3a*c® + 3a?b* 4 3a?b*c® + 3ac? — O + b + bt — F)

(204 — 3a2b? — 3a2¢ + bt — 2622 + )’
6 b’ (2 (b* + *) — a?)
(02 + 2)?
. @’ +a (=30 +2bc = 3c?) +2(b - ¢)*(b+ o)
4a
< —a® +a (3b* — 2bc + 3¢*) + 2(b — ¢)*(b+ ¢)
4a
9 Cbe(at =20 (0?4 )+ (- o))
(b—c)2—a(b+c))’
10 a*(—(a+b))(a+c)+b*(a+b)(2a+b+c)+*(a+c)(2a+b+c)
(2a 4+ b+ c)?
1 (b*x + Ay)(z +y) — a’zy here £ (a—0b)?*(a+b—c)
W
(x+y)? =(a—c)*(a—b+c)
_ 2 2 2 2,2 2.2 —(a+c)?(a+b

19 zy (—a® + b* + 2) + b*y* + Px where c)*(a c)

(z +y)*
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3. MAIN RESULTS

Notation. The symbol S,, represents the sum of the squares of the lengths of the
cevians of AABC' that pass through triangle center X,,. In other words,

Sy = |AAL + | BBo|? + |CC, 2.

For example, if n = 2, then the cevians are medians and Sy = m2 + mj + m2.

Conventions. In this section, all inequalities listed are best possible.

The inequality S,, < kof(a,b,c) is said to be best possible if there is no constant
k with k < ko such that S,, < kf(a,b,c) is true for all triangles.

The inequality kof(a,b,c) < S, is said to be best possible if there is no constant
k with k > ko such that kf(a,b,c) < S, is true for all triangles.

If no upper bound is listed for S,, with respect to f(a,b, c), this means that there
is no constant k such that S, < kf(a,b,c) is true for all triangles.

If no lower bound is listed for S,, with respect to f(a,b,c), this means that there
is no constant k& > 0 such that kf(a,b,c) < S, is true for all triangles.

Methodology. The best constants for all inequalities were found using Mathe-
matica and Algorithm K from [8]. Since all computations were performed using
exact symbolic algebra (as opposed to numerical approximations), these computer
calculations constitute proofs that the inequalities are correct.

Theorem 1. The following inequalities are true for all triangles.
277’2 S Sl S ZRZ

277"2 < SQ

IN

2 R?
4
27r2 < S

I
|
%,

27r2 < S,
27r? < Sy < —R?
27r? < Sg < —R?

27r? < S; < ——R?

27r? < Sy < 12R?

68
27r? < Sy < §R2

2712 < SlO < —R?
kir® < Spyp < —R?
277“2 S 512 S ZRQ

where k; =~ 30.91612615 is the positive root of 23 — 3222 4 48z — 448.
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Equality occurs when the triangle is equilateral, except in the following cases.

For 27r? < S3, S5 < 2IR?, and 27r% < Sj, equality occurs when the sides of the
triangle are proportional to 1, 1, and v/3.

For S1; < 6—74R2, equality occurs when the sides of the triangle are proportional to

1,1, and 2\/?

For kir? < Si1, equality occurs when the sides of the triangle are proportional to
1, 1, and the positive root of 723 + 222 + 4x — 8.

Lemma 1. Let A’ be a point in the interior of side BC' of ANABC'. Let |AB| = ¢,
|AC| = b and |AA'| = z, (Figure[3). Then

he <z, < max(b,c)
where h, is the length of the altitude from A.

B

FiGURE 3. Cevian from A

Proof. Let H be the foot of the altitude from A (Figure [). By the Pythagorean
Theorem, it can be seen that the closer A’ gets to H, the smaller z, gets. The
minimum value of z, is h, and the maximum value for z, is the larger of b and c.

U

F1GURE 4. Cevian from A

Proposition 3. Let P be a point inside ANABC'. Let x be the sum of the squares
of the lengths of the cevians through P. Then

27r? < x < 12R2.



STANLEY RABINOWITZ 7

Proof. We will prove a more general result. Let x, be the length of any interior
cevian from vertex A of AABC. (An interior cevian meets the opposite side at
an interior point of that side.) Define z;, and z, similarlly. Note that the three
cevians need not all pass through the same point P. Then we will show that

(1) 27r% < 22 + x} + 22 < 12R*.
By Lemmall| x, > h,. Similarly for x; and z.. Thus,
22+ xf + a2 > hZ + hi + h2.

But
hZ + hi + h2 > 27r?

from inequality 277 < S, of Theorem . This proves the left side of Equation .
Without loss of generality, we can assume that a < b < ¢. By Lemma [I], we have
T, < c, xp <c,and z. < b. Thus

(2) 2+ af + a2 < b+ 20

The right side of Equation ([1) will then be true if we can prove that v>+2c¢? < 12R2.
This inequality is not homogeneous, so we cannot use the methods of [§]. Instead,
we use the Simplify command in Mathematica. The formula for R in terms of a,
b, and ¢ is well known, namely

abce

R=1r

where K is the area of AABC. We thus issue the following Mathematica com-
mands.

s = (atb+c)/2;
K = Sqrt[s(s-a)(s-b) (s-c)];
R = axbxc/(4K);

inequality = b"2+2c”2 < 12R"2;
triangCondition = a>0 && b>0 && c>0 && at+b>c && b+c>a && c+a>b;
Simplify[inequality, triangCondition]

Mathematica responds with True, indicating that the inequality is correct. Note
that we did not need the condition a < b < ¢. This concludes the proof of the
right side of Equation . U

The constants in Proposition 3| are best possible as can be seen by the inequality
for Sg in Theorem [I}
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Continuing with Algorithm K, we get the following results.

Theorem 2. The following inequalities are true for all triangles.

8
582 < Sl §82

3
82 < SQ < 582

S4§82
33,

<
]_8

2—582 < SG §S2

1

532 < S, < 2
s? < Sy < 352
$? < Sy < 257

17

82 < SlO < 382

Z82 < 5y <28

8

1

552 < 512 S 82

Equality occurs when the triangle is equilateral, except in the following cases.
For S5 < %52, equality occurs when the sides of the triangle are proportional to
1, 1, and v/3.

For 532 < 511, equality occurs when the sides of the triangle are proportional to
1, 1, and %

Proposition 4. Let P be a point inside NABC'. Let x be the sum of the squares
of the lengths of the cevians through P. Then

T < 3s°.

Proof. This inequality follows from Equation and the fact that the Mathemat-
ica code

inequality = b"2+2c"2 < 3s572;
Simplify[inequality, triangCondition]

returns True. O

The constant “3” is best possible as can be seen from the inequality for Sg in
Theorem (2

Lemma 2. Let A" be a point in the interior of side BC' of AABC'. Let |AB| = c,
|AC| = b and |AA'| = z, (Figure[3). Then

x, > min(b, ¢) cos 3
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Proof. In [5], it is shown that
A
zq > (kb+ K'c) cos 3

where k = |BA'|/|A'C| and k¥’ = 1 — k. The function f(k) = kb+ (1 — k)cis a
linear function of k over the interval [0, 1]. It takes on all values from min(b, ¢) to
max(b, ¢). Therefore, when b > 0, ¢ > 0, and 0 < k£ < 1, we must have

kb + (1 — k)c > min(b, ¢).
The result now follows. O

Proposition 5. Let P be a point inside AABC'. Let x be the sum of the squares
of the lengths of the cevians through P. Then

L,
=s" <.
23 x

Proof. By Lemma [2] we have

A
x2 > min(b?, ¢?) cos? 3

From the half-angle formula for cosine,
A 1+cosA

cos’ == ———

2 2
and from the Law of Cosines,
2., 2 9
cosA= T
2bc

we see that
(b+c—a)(b+c+a)
4bc

22 > min(b?, ¢?)
with similar formulas for z; and z..
Without loss of generality, assume that a < b < ¢. Then
(b+c—a)s L(c+a—Db)s L(a+b—c)s
2bc ta 2ca ta 2ab '

Using this value for x in terms of a, b, and ¢, and the definitions of s and
triangCondition from the proof of Proposition [3 we issue the following Mathe-
matica commands.

(3) x=a+a;+a>>0b

inequality = x > (1/2)s"2;
Simplify[inequality, triangCondition]

The response of True proves the inequality. U

The proof shows that the result is true for any three internal cevians. They do
not necessarily have to all pass through the same point P.

The constant “1/2” is best possible as can be seen from the inequality for S; in
Theorem (21

Related results can be found in Theorem 14.11 of [I, p. 124] and Theorem 7.22 of
6, p. 337].
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Continuing with Algorithm K, we get the following results.

Theorem 3. The following inequalities are true for all triangles.

2
;TR <5 < ;\/gRs

2
;TR < SQ < 3Rs
3
S4 S 5\/§RS

66
< —
55 ~ 25RS
288

3
_ < —
o rR < Sg < 2\/§Rs

3
&rR < 5; < 5\/§Rs

2
gTR < Sg < 6Rs

27 34
— < —
2 rR <8y < 9 Rs

27

34
?T’R < Sl(] < ERS

]CQT’R S 511 S kgRS
rR < 512 < g\/gRs

where ky ~ 14.12657721 is the positive root of 223 — 52?2 — 256z — 1024 and
ks ~ 3.737553924 is the largest positive root of 4x%+201172*—35686422+1048576.

Equality occurs when the triangle is equilateral, except for S5 < %Rs, where

equality occurs when the sides of the triangle are proportional to 1, 1, and v/3.

Proposition 6. Let P be a point inside ANABC'. Let x be the sum of the squares
of the lengths of the cevians through P. Then

8rR < x < 6Rs.
Proof. The right side of the inequality follows from Equation (2|) and the fact that
the Mathematica code
inequality = b"2+2c”2 < 6Rx*s;
Simplify[inequality, triangCondition]

returns True.
The left side of the inequality follows from the fact that the Mathematica code

r = K/s;
inequality = x > 8rR;
Simplify[inequality, triangCondition]

returns True, where x is given by Equation . U

The constants in Proposition [6] are best possible as can be seen from the inequal-
ities for S; and Sg in Theorem [3]
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Continuing with Algorithm K, we get the following results.
Theorem 4. The following inequalities are true for all triangles.
3V3K < S
3V3K < S,
3V3K < S
3V3K < S
3V3K < Sy
3vV3K < Sy
3V3K < S
42K < Sy
3V3K < Spy
Equality occurs when the triangle is equilateral, except for 4v/2K < Si;, where
equality occurs when the sides of the triangle are proportional to 1, 1, and %

Proposition 7. Let x, be the length of an internal A-cevian in NABC'. Define
xy and . similarly. (The three cevians need not concur.) Let x = a2 + x} + 2.
Then

T Z k7K

where k7 ~ 4.319536403 is the positive real root of 2% + 2792%* + 26353222 +
12873312%° + 295504792% — 84430591216 — 1987313224121 — 177553607339x'2 4
39954697839042° —20956237447808x% 4-248200974192642° — 17358828744704x* +
51149799424002% — 1274019840000 and is the best possible constant.

Proof. The following Mathematica code proves this result.

s = (at+b+c)/2;

K = Sqrt[s(s-a)(s-b) (s-c)];

expression = x/K;

Minimize[expression, triangCondition, {a,b,c}]

where x is given by Equation (3)). O



12 INEQUALITIES INVOLVING CENTRAL CEVIANS

If the 3 cevians concur, then Theorem || would suggest that xi +:I:§ —ch > 3/3K.
However, this is not the case. Figure [5| shows an example where

2 2 2
T, + Ty + T,
K

~ 4.95030 < 3v/3.

B

FIGURE 5. Three concurrent cevians with (22 + 27 + 22) < 3v/3K.

In this figure, found using Geometer’s Sketchpad, a = 3, b = 105/32, ¢ = 39/8,
|B'C| =~ 2.10706, |AC"| =~ 2.76794, |[BA'| ~= 2.93549, |C'A’| =~ 0.06451,

|AB’| =~ 3.22726, |C'B’| ~ 0.05399, z, ~ 3.29496, z}, ~ 3.01143, z. ~ 1.98276, and
(22 + 22 + 22)/ K =~ 4.95030.

Noting that 4.95030% ~ 24.5 suggests the following conjecture.

Conjecture 1. Let P be a point inside NABC'. Let x be the sum of the squares
of the lengths of the cevians through P. Then

T > ;\/§K
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4. RELATED RESULTS

In this section, the inequalities are all best possible, however, we omit inequalities
involving S,, for n =3, 5, 11, or 12. The compute power available to us was
insufficient to find many of the inequalities involving these central cevians. The
results were found using Algorithm K.

Theorem 5. The following inequalities are true for all triangles.

1 3
5(0,2+b2+02) < Sl S Z(Clz‘i‘bQ‘{‘CQ)
3
5221( 2+b2+02)
Sy < 2(a2+b2+02)
3

12
2—5(a2+62+02)< S < 5 2102+ )

1
g(a2+b2+c2)<57§—( 2102+ )

o

2(@2 + b7+ c?) < S < g(aQ +0* + %)

3 4
Z(GQ + 0%+ c?) < Sy < g(a2 +b% 4+ ¢?)

3 17
Z(a2 + b2+ c*) < Sy < 1—8(a2 +0* + %)

Equality occurs when the triangle is equilateral.

Proposition 8. Let P be a point inside ANABC'. Let x be the sum of the squares

of the lengths of the cevians through P. Then
1

1
g(a2 +V+ )<< 5(3 +V3)(a® + % + ).

The proof uses Mathematica in the same way as in the proof of Proposition [6] and
is omitted.

The constant “1/3” on the left side of the inequality in Proposition |§| is best
possible as can be seen from the inequality for S7 in Theorem 5 To show that the
constant “%(3 ++/3)” on the right side is best possible, we recall Equation ,
and then issue the following Mathematica command.

expression = (b"2+2c~2)/(a"2+b"2+c"2);

Maximize[expression, triangCondition, {a,b,c}]

Mathematica returns the maximum %(3+ v/3) and states that the maximum occurs
for the degenerate triangle with sides 1, 1 + \/3, and 2 + /3.
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Continuing with Algorithm K, we get the following results.

Theorem 6. The following inequalities are true for all triangles.

32
4—5(ab+bc+ca) < Sy <ab+bc+ca

§(ab—i— be+ca) < Sy < g(ab+ be + ca)

4
Sy < ab+ be+ ca

72
ﬁ(ab%—bc%—ca) < Sg <ab+bc+ca

2
g(ab+bc+ca) < S7 < ab+bc+ ca

%(ab—i— be+ ca) < Sg < 3(ab + be + ca)

1
Z(ab+ be+ ca) < Sy < g(ab—l— be + ca)

1
%(ab—i— bec+ ca) < Syp < g(alﬂ— be + ca)

Equality occurs when the triangle is equilateral.

Proposition 9. Let P be a point inside AABC'. Let x be the sum of the squares
of the lengths of the cevians through P. Then

2
g(ab+ be+ ca) < x < 3(ab+ be + ca).

The proof uses Mathematica in the same way as in the proof of Proposition [6] and
is omitted.

The constants in the inequality in Proposition [9] are best possible as can be seen
from the inequalities for S7 and Sg in Theorem @
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Continuing with Algorithm K, we get the following results.

Theorem 7. The following inequalities are true for all triangles.

9
Sl S SQ SQ S 181
100 Sy < 5 S- < S, 16
< 100 <
Sl =~ 81 Sﬁ S4 S 5’2 5,7 S SQ Sg S 352
1
Sl§§687 §4§§6 S7§k456 Sg<2§556
4 < 57 S, < S N
Sy < Sy S, < S, 57 B 58 Sy < 45;
< - 7 > M9
gl B gg S1< S Sy < Sio % = i;
b= S4 < SIO Sg < ESN
Sg < 38 17
3 8 1 -t
Sy < 551 Se < 51 Sg < 25, S10 < 9451
s, <25 % < Ss = 35 S < 228,
2= 167" 36 . < 45 27
9 SGS%S7 8 = 7 ¢ < 17S
BEDT s<8 si<is 0T
S, < S, 17 64
2 =8 Se < Sy S<27S S10§%S7
52 < Sg 56 < SlO 3 = ﬁ 10 Slg < 58
S, < 8 o
2= S10 < Sy

where k;, ~ 1.017624086 is the smallest positive root of 25947z7 + 6536972° —
4985788525 + 128952193z* — 11207693523 + 3242628322 — 3014327z + 2963603.

We did not check for the conditions when equality occurs.

Corollary 8. For all triangles,
27r? < Sy < S5 < 51 < 85 < Sjp < Sg < Sg < 12R%

Related results can be found in [7].
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5. ACUTE TRIANGLES

Algorithm K in [8] allows us to search for inequalities that are true for all acute
triangles. We get the following results. We did not check for the conditions when
equality occurs.

Theorem 9. The inequalities given by Theorem [1] are best possible when the tri-
angles are restricted to acute triangles. In addition, the following inequality is
true for all acute triangles.

Sy < 9R?

Theorem 10. The following inequalities are true for all acute triangles.

(75 _ 28\/7) 2< G <8
2 < 8y < =3

12 < S5 < —5
(15 — 10v2)s? < S, < 5°
%(3 —2V2)s? < S5 < —s

kys? < Sg < s

147 — 419\/5782 “ s

$2 < Sy < 252
17
s* < Spp < 532

g:f < Spp < (27 — 18V/2)s?
8043 — 53302 2

529

where k5 ~ 0.8742445769 is the positive root of
50002 + 322412° + 2157992* — 16497023 — 23916622 + 258633z — 77841.

Constants in blue are those that differ from the corresponding constant in Theo-
rem [2

< Sy < 8
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Theorem 11. The following inequalities are true for all acute triangles.
2?77"}3 < 5 < g\/gRs
2777”}2 < Sy < 3Rs
%TR <53 < %Rs
(54 5V2)rR < 8, < g\/éRs

49 + 492 66
+—\/_T'R S S5 S %RS

4 49+/2
9—'——9\/_74% < S < ;\@Rs

3
(34+7V2)rR < S; < 5\/533

2
;TR < 5S¢ <6Rs

27 34
?TR S Sg S ERS
27 34

?TR S SIO S gRS

korR < Sii < (9V2 — 9)Rs
3001 + 2905+/2
529
where ky &~ 14.12657721 is the positive root of 223 — 5% — 2562 — 1024.

Constants in blue are those that differ from the corresponding constant in Theo-
rem [3

rR < 513 < g\/gRS

Theorem 12. The inequalities given by Theorem [ are best possible when the
triangles are restricted to acute triangles. In addition, the following inequality is
true for all acute triangles.

K <5y
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Theorem 13. The following inequalities are true for all acute triangles.

1
S0+ 0 +¢%) < 8 < S+ 07 + )

L | W

Sy = —(a® + b+ ¢?)

(> + 0>+ %) < Sy < ~(a® +b* + 2)

5,
+
o
+
Ql\')
I
e
IA

(a® +b* + )

(@®+ b+ < S < =(a®>+b*+ )

O QW] W W

gl
@l\D
+
Y
+
Ql\')
AN
2
AN

< —(a*+V*+ )
17

“(a®+ b+ %) < S < 1—8(a2 +b* + %)

1
1(“2 + b0+ ) < Spp < 1—;(a2 +0*+¢?)

(]

Constants in blue are those that differ from the corresponding constant in Theo-
rem [

Theorem 14. The following inequalities are true for all acute triangles.

9 _
#(ab%—bchc&) < S <ab+bc+ca
%(abqtbc—kca) < 5, < g(ab+bc+ca)
1 _
%(ab—l—bc—}—m) < Sy <ab+bc+ca
ke < Sg < ab+ bc—+ ca
2 — 27
%(ab%—bchca) < S; <ab+be+ ca
z(aqubc—I—ca) < Sg < 3(ab + bc + ca)
3 17
Z(ab—l—bc+ca) < 8§y < g(ab—l—bc—l—ca)
3 17
Z(ab+bc+ca) < S < g(ab—l—bc%—ca)

where kg ~ 0.7067084379 is the positive root of 51200027 +831488x° +5194242° —
82176x* + 109310423 — 208440022 + 946647z — 233523.

Constants in blue are those that differ from the corresponding constant in Theo-
rem [6G
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